Consistent, Independent, and Distinct Propositions. III: Modalities in S6

ANJAN SHUKLA

In [3] McKinsey showed that S 2 has infinitely many nonequivalent modalities, viz., the modalities $\diamond p, \diamond \diamond p, \diamond \diamond \diamond p, \ldots$ Prior ([4], p. 125) conjectured that there are infinitely many nonequivalent modalities in S6. The conjecture readily follows from the results of [6] and [7]. S6 is a subsystem of both S10 and S11, and in both S10 and S11 we have the theorems $\sim\left(\mathbf{P}_{s} \longrightarrow \mathbf{P}_{t}\right)(0 \leqslant s<t)$ for $\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}, \ldots$, and hence that none of $\mathbf{P}_{s} \rightarrow \mathbf{P}_{t}$ is a theorem. Hence the modalities $\sim \diamond p, \diamond \diamond p, \diamond \sim \diamond \diamond p, \ldots$ are all nonequivalent in S10 and S11, and hence in S6. In this note we show that the modalities $\diamond p, \diamond \diamond p, \diamond \diamond \diamond p, \ldots$ are all nonequivalent in S6. Lewis ([2], p. 499) described $\diamond \diamond p \rightarrow \diamond p$ and $\diamond \diamond p$ as 'contrary assumptions' in the field of S2. (This is an error.) If $\diamond \diamond p \rightarrow \diamond p$ is assumed clearly all the aforementioned modalities collapse to $\diamond p$. We note that if we assume $\diamond \diamond p$ all of them remain nonequivalent.

Consider the matrix described in [6], pp. 402-403. Our matrix M is obtained from it by the following modification: $P\{n\}=\{2,3, \ldots, n, n+2\}$ $(n \geqslant 3)$. By Theorem 2 of [6] (p. 402), 引 is a σ-regular S6-matrix. We show that none of the following is a theorem of $S 6: \nabla^{s} p \nrightarrow \nabla^{t} p(s>t \geqslant 1)$. We first note that $P^{n} 0=\{2,3, \ldots, 2 n-1,2 n+1\} \quad(n \geqslant 2)$. We proceed by induction. $P^{n+1} 0=P\left(P^{n} 0\right)=P\{2,3, \ldots, 2 n-1,2 n+1\}=P\{2\} \cup[P\{4\} \cup P\{6\} \cup \ldots \cup$ $P\{2 n-2\}] \cup[P\{3\} \cup P\{5\} \cup \ldots \cup P\{2 n+1\}]=P\{2\} \cup P\{2 n-2\} \cup$ $P\{2 n+1\}=\{2,3\} \cup\{2,3, \ldots, 2 n-2,2 n\} \cup\{2,3, \ldots, 2 n+1,2 n+3\}=$ $\{2,3, \ldots, 2 n+1,2 n+3\}$. Now suppose that $\vdash_{\mathrm{S} 6} \diamond^{s} p \longrightarrow \diamond^{t} p$. Hence, since 3π is an S6-matrix, by Definitions II.17.16 [5], for $x \in M, P^{s} x \Rightarrow P^{t} x \in D$. By Theorem III.6 [5], $P^{s} x \leqslant P^{t} x$. Let $x=0$. If $t=1,\{2,3, \ldots, 2 s-1,2 s+1\}=$ $P^{s} 0 \leqslant P 0=\{3\}$. If $t>1,\{2,3, \ldots, 2 s-1,2 s+1\}=P^{s} 0 \leqslant P^{t} 0=\{2,3, \ldots$, $2 t-1,2 t+1\}$. By Definition II. 10 [5], both are contradictions.

