A Note on Intuitionistic Models of ZF

R. LAVENDHOMME and T. LUCAS

An analysis of the forcing construction of models of $Z F$ by means of intuitionistic logic and Kripke semantics (or sheaf semantics) has been made by many authors (see for example [1], [2], [5]). We feel however that some basic information is still available from this approach, the motto of which could be "think of a sheaf of structures as a structure, using intuitionistic logic". In this note, we are not really interested in obtaining independence results, but want to sketch a set-theoretic forcing along lines which closely agree with that motto. In usual forcing constructions, there are two sheaf structures:

$$
\left\langle M,-\epsilon_{p}-\right\rangle_{p \epsilon C}
$$

and

$$
\langle M, p \Vdash-\epsilon-\rangle_{p \epsilon C},
$$

and passing from the first to the second is nothing else than a sheaf-version of the extensionalization of a binary relation. This is discussed in Section 2 for Kripke-structures but the proofs are designed so as to immediately extend to sheaf structures as is indicated in Section 4. Application to the construction of models of $Z F$ is given in Section 3. To this we add definitions and notions which bring the construction closer to the classical construction of inner models of $Z F$ and, as a "test-case", indicate how to adapt the well-known proof of relative consistency of $V \neq L$.

Roughly speaking, we may distinguish between two approaches to forcing. In the first, the model, be it Boolean-valued or intuitionistic, is constructed from the base model M as a union of a sequence of M_{α} indexed by ordinals of M ([1], [2], [4], [5]). In the second, no hierarchy is present, at least to begin with, and the hierarchy effect remains concentrated in the various forms of induction [7]. Our approach is of the second kind and may be viewed as an intuitionistic version of [7], whereas [2] for example is an intuitionistic construction of the first kind. In fact, this distinction is not so clear-cut and the

