Notre Dame Journal of Formal Logic Volume 24, Number 1, January 1983

On the Borel Classification of the Isomorphism Class of a Countable Model

ARNOLD W. MILLER*

Introduction For ρ , a countable similarity type, let X_{ρ} be the space of structures of similarity type ρ whose universe is ω (see [13], Section 3). For any element \mathcal{A} of X_{ρ} , let $[\mathcal{A}]$ be the set of all elements of X_{ρ} which are isomorphic to \mathcal{A} . Scott [10] showed that $[\mathcal{A}]$ is a Borel subset of X_{ρ} . In fact, he showed that for any such \mathcal{A} there is a sentence θ of $L_{\omega_1\omega}$ such that $[\mathcal{A}]$ is exactly the set of elements of X_{ρ} which are models of θ (see [1], Ch. VII, for a good write-up of Scott sentences).

In [13] Vaught considerably strengthened Scott's result. There is a natural hierarchy of formulas of $L_{\omega_1\omega}$. Let $\Pi_0^0=\Sigma_0^0$ be the quantifier-free first-order formulas. For any $\alpha \geq 1$ the Π_α^0 formulas are those of the form:

$$\bigwedge_{n < \omega} \forall x_1 \forall x_2 \dots \forall x_n \theta_n$$

where each θ_n is $\Sigma^0_{\beta_n}$ for some $\beta_n < \alpha$. The Σ^0_{α} formulas are those of the form:

$$\bigvee_{n<\omega}\exists x_1\exists x_2\ldots\exists x_n\theta_n$$

where each θ_n is $\Pi^0_{\beta_n}$ for some $\beta_n < \alpha$. A set $B \subseteq X_\rho$ is called invariant iff it is closed under isomorphism. Vaught showed that for every Π^0_α invariant set B there is a Π^0_α sentence θ such that B is the set of models of θ , and similarly for Σ^0_α .

^{*}Research was partially supported by the NSF.