Automorphisms of ω-Octahedral Graphs

J. C. E. DEKKER

I Preliminaries This paper is closely related to [2] which deals with automorphisms of the ω -graph Q_N associated with the ω -cube Q^N and [3] which deals with the ω -graph Oc_N associated with the ω -octahedron Oc^N . We use the notations, terminology, and results of [2]. The propositions of [2] are referred to as A1.1, A1.2, ..., A2.1, A2.2, ... etc., those of [3] as B1.1, B1.2, ..., B2.1, B2.2, ... etc.

For $n \ge 1$ the *n*-octahedral graph is defined as the complete *n*-partite graph $K(2, \ldots, 2)$ with two vertices in each of its partite sets ([4], p. 69). Let Oc_n have $\mu = (0, ..., 2n - 1)$ as set of vertices and ((0, 1), ..., (2n - 2, 2n - 1))as class of its partite sets. Define f as the permutation of μ which for $0 \le k \le$ n-1 interchanges 2k and 2k+1. Call the vertices p and q of Oc_n opposite, if they correspond to each other under f, then p and q are adjacent, iff they are not opposite. Throughout this paper the symbols v, v_0 , v_1 denote nonempty sets, and μ and μ_{ν} stand for sets of cardinality ≥ 2 . An *involution without fixed* points (abbreviated: iwfp) of a set μ is a permutation f of μ such that $f^2 = i_{\mu}$ and $f(x) \neq x$, for $x \in \mu$. The iwfp f of μ is an ω -iwfp, if it has a partial recursive one-to-one extension. With every imp f of μ we associate a graph $G_f = \langle \mu, \theta \rangle$, where θ consists of all numbers $can(x, y) \in [\mu; 2]$ such that $f(x) \neq y$. Note that the iwfp f is uniquely determined by G_f . The graph $G = \langle \mu, \theta \rangle$ is octahedral, if $G = G_f$, for some iwfp f of μ . The octahedral graph $G_f = \langle \mu, \theta \rangle$ is ω -octahedral, if f is an ω -iwfp of μ . The vertices p and q of the octahedral graph G_f are opposite, if f(p) = q; thus p and q are adjacent iff they are not opposite. According to B2.2 an ω -octahedral graph $G_f = \langle \mu, \theta \rangle$ is a uniform ω -graph for which there exists a nonzero RET N such that $Req \mu = 2N$ and $Req \theta =$ 2N(N-1). Define the functions d_0 and d_1 by: $\delta d_0 = \delta d_1 = \varepsilon$, $d_0(x) = 2x$, $d_1(x) = 2x + 1$. With every set v we associate the sets $v_0 = d_0(v)$, $v_1 = d_1(v)$, and $\mu_{\nu} = \nu_0 \cup \nu_1$. The standard ω -iwfp associated with the set ν is the ω -iwfp f of μ_{ν} such that f(2x) = 2x + 1 and f(2x + 1) = 2x, for $x \in v$. The standard ω octahedral graph Oc_{ν} associated with the set ν is the ω -graph $G_f = \langle \mu_{\nu}, \theta_{\nu} \rangle$,

Received May 27, 1981