Automorphisms of ω-Octahedral Graphs

J. C. E. DEKKER

1 Preliminaries This paper is closely related to [2] which deals with automorphisms of the ω-graph Q_{N} associated with the ω-cube Q^{N} and [3] which deals with the ω-graph $O c_{N}$ associated with the ω-octahedron $O c^{N}$. We use the notations, terminology, and results of [2]. The propositions of [2] are referred to as A1.1, A1.2, . ., A2.1, A2.2, . . etc., those of [3] as B1.1, B1.2, ..., B2.1, B2.2, . . etc.

For $n \geqslant 1$ the n-octahedral graph is defined as the complete n-partite graph $K(2, \ldots, 2)$ with two vertices in each of its partite sets ([4], p. 69). Let $O c_{n}$ have $\mu=(0, \ldots, 2 n-1)$ as set of vertices and $((0,1), \ldots,(2 n-2,2 n-1))$ as class of its partite sets. Define f as the permutation of μ which for $0 \leqslant k \leqslant$ $n-1$ interchanges $2 k$ and $2 k+1$. Call the vertices p and q of $O c_{n}$ opposite, if they correspond to each other under f, then p and q are adjacent, iff they are not opposite. Throughout this paper the symbols ν, ν_{0}, ν_{1} denote nonempty sets, and μ and μ_{ν} stand for sets of cardinality $\geqslant 2$. An involution without fixed points (abbreviated: iwfp) of a set μ is a permutation f of μ such that $f^{2}=i_{\mu}$ and $f(x) \neq x$, for $x \in \mu$. The iwfp f of μ is an ω-iwfp, if it has a partial recursive one-to-one extension. With every iwfp f of μ we associate a graph $G_{f}=\langle\mu, \theta\rangle$, where θ consists of all numbers $\operatorname{can}(x, y) \in[\mu ; 2]$ such that $f(x) \neq y$. Note that the iwfp f is uniquely determined by G_{f}. The graph $G=\langle\mu, \theta\rangle$ is octahedral, if $G=G_{f}$, for some iwfp f of μ. The octahedral graph $G_{f}=\langle\mu, \theta\rangle$ is ω-octahedral, if f is an ω-iwfp of μ. The vertices p and q of the octahedral graph G_{f} are opposite, if $f(p)=q$; thus p and q are adjacent iff they are not opposite. According to B2.2 an ω-octahedral graph $G_{f}=\langle\mu, \theta\rangle$ is a uniform ω-graph for which there exists a nonzero RET N such that $\operatorname{Req} \mu=2 N$ and $\operatorname{Req} \theta=$ $2 N(N-1)$. Define the functions d_{0} and d_{1} by: $\delta d_{0}=\delta d_{1}=\varepsilon, d_{0}(x)=2 x$, $d_{1}(x)=2 x+1$. With every set ν we associate the sets $\nu_{0}=d_{0}(\nu), \nu_{1}=d_{1}(\nu)$, and $\mu_{\nu}=\nu_{0} \cup \nu_{1}$. The standard ω-iwfp associated with the set ν is the ω-iwfp f of μ_{ν} such that $f(2 x)=2 x+1$ and $f(2 x+1)=2 x$, for $x \in \nu$. The standard ω octahedral graph $O c_{\nu}$ associated with the set ν is the ω-graph $G_{f}=\left\langle\mu_{\nu}, \theta_{\nu}\right\rangle$,

