Pointwise Definable Substructures of Models of Peano Arithmetic

ROMAN MURAWSKI*

Let $P A$ be Peano arithmetic formalized in a first-order language $L(P A)$ with $0, S,+, \cdot$ as nonlogical symbols and based on the usual Peano axioms with the axiom scheme of induction. Let M be a model of $P A$. Since we have in $P A$ definable Skolem functions, $\operatorname{Def}(M)<M$ where $\operatorname{Def}(M)$ is the substructure of M with the universe consisting of elements definable in M without parameters. If M is a nonstandard model, then we have in M nonstandard formulas. Therefore we can consider substructures of M analogous to $\operatorname{Def}(M)$ with universes consisting of points definable by certain nonstandard formulas and initial segments of M generated by such pointwise definable substructures.

After recalling some basic information on satisfaction classes we give the precise definition of pointwise definable substructures. We distinguish two cases: (a) definability without parameters bigger than the defining formulas and (b) definability with a parameter bigger than the defining formulas. We consider properties of such substructures and of their families.

1 Introduction A serious approach to the possibility of nonabsoluteness of the finite (and so of the logical syntax too) was realized first by Robinson in [15] where he has also shown that nonstandard languages have no uniquely determined semantics. Krajewski (in [11]) has explicitly introduced and has studied the notion of a satisfaction class.

Recall that if M is a nonstandard model of $P A$ and $F m$ is a formula of $L(P A)$ strongly representing in $P A$ the recursive set of Gödel numbers of formulas of $L(P A)$ (cf., e.g., [1] and [16]) then we have in M nonstandard objects a such that $M \vDash F m[a]$. We call them nonstandard formulas. They determine a nonstandard language which we denote by $\operatorname{Form}(M)$. To speak about its

[^0]
[^0]: *The author would like to thank Henryk Kotlarski of Warsaw for many very helpful discussions and suggestions.

