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Pointwise Definable Substructures

of Models of Peano Arithmetic

ROMAN MURAWSKI*

Let PA be Peano arithmetic formalized in a first-order language L(PA)
with 0, S, 4-, as nonlogical symbols and based on the usual Peano axioms with
the axiom scheme of induction. Let M be a model of PA. Since we have in PA
definable Skolem functions, Def(M) < M where Def(M) is the substructure of
M with the universe consisting of elements definable in M without parameters.
If Mis a nonstandard model, then we have in Mnonstandard formulas. There-
fore we can consider substructures of M analogous to Def(M) with universes
consisting of points definable by certain nonstandard formulas and initial seg-
ments of M generated by such pointwise definable substructures.

After recalling some basic information on satisfaction classes we give the
precise definition of pointwise definable substructures. We distinguish two cases:
(a) definability without parameters bigger than the defining formulas and (b)
definability with a parameter bigger than the defining formulas. We consider
properties of such substructures and of their families.

/ Introduction A serious approach to the possibility of nonabsoluteness of
the finite (and so of the logical syntax too) was realized first by Robinson in [15]
where he has also shown that nonstandard languages have no uniquely deter-
mined semantics. Krajewski (in [11]) has explicitly introduced and has studied
the notion of a satisfaction class.

Recall that if M is a nonstandard model of PA and Fm is a formula of
L(PA) strongly representing in PA the recursive set of Gόdel numbers of for-
mulas of L(PA) (cf., e.g., [1] and [16]) then we have in Mnonstandard objects
a such that MY Fm[a]. We call them nonstandard formulas. They determine
a nonstandard language which we denote by Form(M). To speak about its
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