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On the Equivalence of Proofs Involving Identity

GLEN HELM AN

In the following, we will consider relations of equivalence defined on nat-
ural deduction proofs for first-order logic with identity. Such equivalence rela-
tions can be derived from theories of normalization, and they are imposed in
applications of category-theory to proofs. Our main concern here will be with
principles of proof-equivalence for various choices of identity rules. Indepen-
dent treatments of identity are not common either in accounts of normalization
or in the relevant work in category-theory, and we will approach proof-equiv-
alence directly, with only passing comments on its connection with these two
fields.1

The discussion will center on two topics. First, we will develop a pair of
moderately strong relations for each of the two usual sets of rules for identity,
rules characterizing it as a congruence and as supporting replacement in all con-
texts. We will also consider two sets of rules for identity that are more analo-
gous to the introduction and elimination rules employed for other constants.
Each of these sets of rules suggests principles of proof-equivalence, but the
resulting relations prove to be different from those developed for the congruence
and replacement rules and are in some ways less satisfactory.

/ Derivations and proof equivalence This section is devoted to concepts and
notation for derivations, and to background assumptions concerning proof-
equivalence. We fix a first-order language whose nonlogical vocabulary may
include sentential, individual, predicate, and function constants. The primitive
logical constants are to be ±, D, Λ, V, and =, with -«φ defined as φ D _L.2 It
is convenient to employ both predicate and function abstracts in our syntactic
analysis; as notation, we use "xφ", "x.t", and the like. A universal formula Vxφ
is understood as the application of the constant V to an abstract x.φ, and sub-
stitution is understood to be an operation which applies to an abstract x.φ (or
x.u) and a term t to yield the substitution φ(t/x) (or u(t/x)). We will often use
the abbreviated notation "φ(t)" and "u(t)"9 where "Φ(-)" and "w(-)" can be
understood as notation for abstracts x.φ and x.u with the abstracted variable
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