Notre Dame Journal of Formal Logic Volume 28, Number 2, April 1987

Decision Procedure for a Class of $(L_{\omega_1 \omega})_t$ -Types of T_3 Spaces

JUAN CARLOS MARTINEZ

The $(L_{\omega\omega})_t$ -types of T_3 spaces are introduced in [1]. An effective procedure is then obtained to decide whether a type is satisfiable in some T_3 space. The expressibility of $(L_{\omega_1\omega})_t$ for T_3 spaces is studied in [2]. For this purpose a class of $(L_{\omega_1\omega})_t$ -types is introduced and in this way we obtain a characterization of the $(L_{\omega_1\omega})_t$ -equivalence for a wide class of T_3 spaces. In the present paper, we prove that there is a decision procedure for this class of types.

1 Preliminaries Suppose that A is a T_3 space and A^* is a subset of A. The *n*-move game $G_n(A^*, A)$ between two players, I and II, is defined as follows. In his *i*-th move (i = 1...n) player I chooses an arbitrary finite sequence a_1, \ldots, a_r of points in A and then in his *i*-th move player II chooses a sequence of r neighborhoods U_1 of a_1, \ldots, U_r of a_r in A. Let U'_1, \ldots, U'_m be all the neighborhoods chosen by II during the game. Player I wins if $A^* \subset U'_1 \cup \ldots \cup U'_m$; otherwise, player II wins. Then, A^* is accessible (in the space A) if for some $n \in \omega$ player I has a winning strategy in the game $G_n(A^*, A)$. With this notion we can study the behavior of convergence. If $a \in A$ we say that A^* converges to $a, A^* \to a$, if a is an accumulation point of A^* . If $A^* \to a$ the following two types of convergence are considered:

- (i) $A^* \stackrel{0}{\to} a$, if for every neighborhood U of a we have that $A^* \cap U$ is not accessible.
- (ii) $A^* \xrightarrow{1} a$, if there is a neighborhood U of a with $A^* \cap U$ accessible.

The set S_n of *n*-types is then defined by induction on *n*:

$$S_0 = \{*\}, S_{n+1} = P\left(\bigcup_{\lambda=0,1} \{(\alpha, \lambda) \colon \alpha \in S_n\}\right),\$$

where P(X) denotes the power set of X.

Received July 8, 1985; revised November 20, 1985

284