Notre Dame Journal of Formal Logic Volume 27, Number 4, October 1986

Finite Kripke Models of HA are Locally PA

D. van DALEN, H. MULDER, E. C. W. KRABBE, and A. VISSER

Introduction In a Kripke model of Heyting's Arithmetic, **HA**, the nodes, when viewed as classical structures, are models of classical arithmetic with (at least) Δ_1^0 -induction. In general, it is an open problem which form of induction holds in the classical structures at the nodes of Kripke models. However, in the case of finite Kripke models (i.e., those containing a finite number of nodes) one can show that all these structures satisfy full induction, and consequently are models of full Peano Arithmetic, **PA**. It can also be shown that any Kripke model with an underlying model structure of type ω must contain an infinite number of such Peano models. These results were established in a workshop in Utrecht (1983).

1 Preliminaries Let L be a first-order language with logical constants: \bot , \land , \lor , \rightarrow , \forall , \exists , =. Let $\neg \phi$ be short for $\phi \rightarrow \bot$ and let $\phi \leftrightarrow \psi$ be short for $(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$. An extension L_D of L is obtained by adding an individual constant \bar{c} for each element c of D. In practice, D shall always be the local domain D_{α} of some node α in a Kripke model, and we shall write L_{α} instead of $L_{D_{\alpha}}$.

A Kripke model $\mathbf{K} = \langle K, \leq, D, I \rangle$ consists of a nonempty set K of nodes, partially ordered by \leq , a function D that assigns a nonempty local domain of individuals to each $\alpha \in K$, and a function I that assigns an interpretation function I_{α} to each $\alpha \in K$. Each I_{α} assigns values to the individual constants, the function symbols, and the predicate symbols of L_{α} , so as to provide for a *local* model $\mathbf{M}_{\alpha} = \langle D_{\alpha}, I_{\alpha} \rangle$. The different I_{α} agree on the values assigned to individual constants that belong to L. Moreover, D and I are to be cumulative in the following sense: if $\alpha \leq \beta$ then $D_{\alpha} \subseteq D_{\beta}$, and, for each function symbol or predicate symbol X, $I_{\alpha}(X) \subseteq I_{\beta}(X)$. K is called finite if K is finite.

Since we are interested in a theory with decidable equality it is no restriction to assume that '=' is interpreted by the actual identity in each node (cf. [1], p. 184).

Semantic evaluations proceed as usual. We write $\alpha \models \phi$ if ϕ is *true* in the (classical) model \mathbf{M}_{α} , and $\alpha \models \phi$ if α *forces* ϕ . Further, we write $\alpha \models \Gamma$ if for each $\phi \in \Gamma$, $\alpha \models \phi$. The symbol '+' shall denote derivability on the strength of intuitionistic logic.

Received April 22, 1985; revised August 2, 1985