Notre Dame Journal of Formal Logic Volume 27, Number 2, April 1986

On Power of Singular Cardinals

SAHARON SHELAH*†

Abstract Using elementary methods we find bounds for the function $2^{\aleph_{\alpha}}$ for $\aleph_{\alpha} = \alpha$. Using only ZFC without additional assumptions, when e.g., \aleph_{α} is strong limit of uncountable confinality:

- If there is no weakly inaccessible below κ_α, then there is no such cardinal below 2^{κ_α}.
- (2) If \aleph_{α} is the first cardinal such that $\lambda = \aleph_{\lambda}$ with $cf\lambda = \aleph_1$, then $2^{\aleph_{\alpha}} < \kappa$ when κ is the first cardinal such that $\kappa = \aleph_{\kappa}$ with cofinality $(2^{2^{\aleph_1}})^+$.

We shall also reprove some of Galvin and Hajnal's results. We do not require any knowledge of earlier results on the subject.

Introduction We shall deal with the following problem: Given a cardinal λ , what are the possible values of 2^{λ} ? More exactly, given \aleph_{α} , our task is to find an ordinal $\alpha(*)$ as small as possible which will satisfy $\aleph_{\alpha(*)} \ge 2^{\aleph_{\alpha}}$.

Let us write some basic facts concerning the power operation:

(0) $\alpha < \beta \Rightarrow 2^{\aleph_{\alpha}} \le 2^{\aleph_{\beta}}$. (1) For every $\alpha 2^{\aleph_{\alpha}} > \aleph_{\alpha}$ (Cantor's theorem).

So only Sections 7, 8, and the last part of the Introduction were written by the author: the author gratefully thanks Avraham and Grossberg for their help.

Received January 1981; revised August 8, 1985

^{*}I would like to thank the United States-Israel Binational Science Foundation for supporting this research by a grant; the NSF for supporting by grants 144-4747 and MCS-76-08479; and the National Sciences and Engineering Research Council for supporting this research by Grant A3040.

[†]Sections 1-6 were written by U. Avraham, from notes in the author's lectures on the subject during Spring 1979, and were revised by R. Grossberg who wrote half of Section 6 and the Introduction. Section 7 contains part of the notes by the author from 1978 (which proves Section 6 using Silver's method) that have not appeared previously. The last section is a letter to Hajnal from Fall 1979 when he discovered the problem mentioned below, trying to explicate the claim from [16].