Notre Dame Journal of Formal Logic Volume 27, Number 1, January 1986

Iterated Images on Manifolds

LEON HARKLEROAD

Many results of classical recursion theory carry over nicely when generalized to recursive manifolds. However, this paper shows that a standard classical property of the basic operation of iteration does not hold in the generalized setting. Specifically, the result

(*) If f is p.r., then $\{f^n(x_0)\}_{n=0}^{\infty}$ is r.e. for any x_0

does not carry over to recursive manifolds.

By way of comparison and contrast, consider the state of affairs for uniformly reflexive structures (URS). The result of this paper has a parallel in Friedman's example [1] of a URS with a nonsemicomputable splinter.¹ However, if a URS has one nonsemicomputable splinter, then it cannot, in fact, have any infinite semicomputable splinter; this implication does not transfer to manifolds, as can easily be seen.

To keep the paper self-contained, this paragraph briefly reviews the relevant terminology from [2]. A simple example of a manifold is N^2 , written as the disjoint union $\bigcup_{i=0}^{\infty} A_i$, where $A_i = \{i\} \times N$ is enumerated by α_i , with $\alpha_i(j) = (i, j)$. B, a subset of N^2 , is \mathfrak{A} -r.e. iff $\alpha_i^{-1}(B)$ is r.e. for every *i*. A function *f* from N^2 to N^2 is \mathfrak{A} - \mathfrak{A} -rec iff for each *m* and *n* there exists partial recursive $f_{m,n} : \alpha_m^{-1}(f^{-1}(A_n)) \to N$ such that $f \circ \alpha_m = \alpha_n \circ f_{m,n}$. A compact *f* from N^2 to N^2 is one such that each $f(A_i)$ is contained in a finite union of A_k 's. If *f* is 1-1 and \mathfrak{A} - \mathfrak{A} -rec such that both *f* and f^{-1} are compact, *f* is an *embedding*. And, as usual, for $S \subseteq N$, χ_S denotes the characteristic function of *S*.

We will show that (*) does not generalize to N^2 (much less to other, more complicated manifolds). In fact, there is an embedding f from N^2 onto N^2 and $x_0 \in N^2$ such that not only is $\{f^n(x_0)\}_{n=0}^{\infty}$ not \mathfrak{A} -r.e., but $\alpha_k^{-1}(\{f^n(x_0)\}_{n=0}^{\infty})$ is not r.e. for any k.

Proof: Define $h: N^2 \to N^2$ by

 $h(\alpha_k(2n+1)) = \alpha_{k+1}(2n+1)$

Received June 11, 1984; revised October 12, 1984