Notre Dame Journal of Formal Logic Volume 27, Number 1, January 1986

Solving Functional Equations at Higher Types; Some Examples and Some Theorems

RICHARD STATMAN*

The solvability of higher type functional equations has been studied by a number of authors. Roughly speaking the literature sorts into four topics: constructive solvability (e.g., Gödel [5], Scott [7]); solvability in all models, i.e., unification (e.g., Andrews [1], Statman [8] and [9]); solvability in models of A.C. (e.g., Church [2], Friedman [4]); and the solvability of special classes of equations (e.g., Scott [7]). In this note we shall consider yet a fifth topic, namely, the solvability of functional equations in extensions of models.

Our main result is the no counterexample theorem. This theorem equates the unsolvability of E in every extension of \mathfrak{A} with the solvability of some other \tilde{E} in \mathfrak{A} . The theorem can be iterated and applied to λ theories (in extended languages) as well as to models. Thus, it can be used to explain, in a general way, a phenomenon well illustrated by the case of $\lambda \sqcup$.

 $\lambda \sqcup$ is the theory of upper semilattices of monotone functionals. $\lambda \sqcup$ has the property that each of its models can be extended to solve all the fixed point equations

$$Mx = x$$

This is a simple consequence of a Scott-type completion argument. It is also an immediate corollary to the no counterexample theorem.

We adopt for the most part the notation and terminology of [8] and [9].

Types τ have the form $\tau(1) \rightarrow (\dots (\tau(t) \rightarrow 0) \dots)$.

If S is a set of objects (terms, functionals, etc.), S^{τ} is the set of all members of S of type τ .

66

^{*}Support for this paper was provided by NSF grant MCS 8301558. The author would also like to thank the referee for his useful comments and corrections.