Notre Dame Journal of Formal Logic Volume 27, Number 1, January 1986

A Linearly Ordered Topological Space that is Not Normal

MELVEN KROM*

An old question of Birkhoff asks whether it can be shown that every linearly ordered topological space is normal, without using the axiom of choice ([1], p. 252, and [5]). An example shows that it is not possible.

Let ZF be Zermelo-Fraenkel set theory without the axiom of choice; we assume that ZF is consistent. Let \mathfrak{O} be the ordering principle, the axiom which asserts that every set can be linearly ordered ([2], p. 19, and [4], p. 31). Let § be the selection principle, which says that for every family F of sets, each containing at least two elements, there is a function f such that for $X \in \mathfrak{F}$, f(X)is a nonempty proper subset of X ([2], p. 53, and [6], p. 207). It is known that there is a model of ZF and D in which S is false ([2], p. 95, exercise 11). Assume that $\mathfrak{F} = \{X_{\alpha} : \alpha \in \Omega\}$ is a family of sets that is a counterexample for S in a model of ZF in which \mathfrak{D} is true. We use \mathfrak{F} to form a linearly ordered set such that with its order topology it is not normal. For simplicity we assume that the members of F are pairwise disjoint, otherwise we could use a family obtained from \mathfrak{F} by replacing each X_{α} with the Cartesian product $X_{\alpha} \times \{\alpha\}$. Let ω be the set of nonnegative integers, let ω^* be the set of negative integers, and let $L = \bigcup_{\alpha \in \Omega} (\omega^* \times \{\alpha\} \cup X_{\alpha} \cup \omega \times \{\alpha\})$. The construction of L does not require the axiom of choice (see [3], Chap. one, and particularly the bottom of p. 15). Using the principle \mathfrak{O} we assume Ω is linearly ordered and for each $\alpha \in \Omega$, X_{α} is linearly ordered. For $\alpha \in \Omega$ let $\omega^* \times \{\alpha\}$ and $\omega \times \{\alpha\}$ be ordered according to the usual orders of ω^* and ω . Finally we extend the orders of these subsets of L to a linear ordering of L so that for each $\alpha \in \Omega$ the subset $\omega^* \times \{\alpha\} \cup$ $X_{\alpha} \cup \omega \times \{\alpha\}$ is ordered with the elements of $\omega^* \times \{\alpha\}$ coming just before those in X_{α} and the elements of $\omega \times \{\alpha\}$ coming just after those in X_{α} . Between elements of such subsets corresponding to different members of Ω we order

Received October 10, 1984; revised January 7, 1985

^{*}Thanks are due to the editor and the referee for noting that the result holds in ZF and not only in set theory with atoms.