Unary Interpretability Logic

MAARTEN de RIJKE*

Abstract Let T be an arithmetical theory. We introduce a unary modal operator 'I' to be interpreted arithmetically as the unary interpretability predicate over T. We present complete axiomatizations of the (unary) interpretability principles underlying two important classes of theories. We also prove some basic modal results about these new axiomatizations.

1 Introduction	The language $\mathfrak{L}(\Box)$ of propositional modal logic consists
of a countable set of	of proposition letters p_0, p_1, \ldots , and connectives \neg , \wedge , and
\square . $\mathfrak{L}(\square, \triangleright)$ is the l	langauge of (binary) interpretability logic, and extends $\mathfrak{L}(\Box)$
with a binary opera	ator ' \triangleright '. (' $A \triangleright B$ ' is read: 'A interprets B'.) The provability
logic L is proposition	onal logic plus the axiom schemas $\Box (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$,
$\Box A \rightarrow \Box \Box A$, and \Box	$\Box (\Box A \rightarrow A) \rightarrow \Box A$, and the rules Modus Ponens $(A, A \rightarrow A) \rightarrow \Box A$
$B \Rightarrow \vdash B$) and Neces	sitation ($\vdash A \Rightarrow \vdash \Box A$). The binary interpretability logic IL is
obtained from L by	y adding the axioms

- (J1) \Box $(A \rightarrow B) \rightarrow A \triangleright B$
- (J2) $(A \triangleright B) \land (B \triangleright C) \rightarrow (A \triangleright C)$
- (J3) $(A \triangleright C) \land (B \triangleright C) \rightarrow (A \lor B) \triangleright C$
- (J4) $A \triangleright B \rightarrow (\Diamond A \rightarrow \Diamond B)$
- (J5) $\Diamond A \rhd A$,

where $\Diamond \equiv \neg \Box \neg$. *IL* is taken as the base system; extensions of *IL* with one or more of the following schemas have also been studied:

- (F) $A \triangleright \Diamond A \rightarrow \Box \neg A$
- (W) $A \triangleright B \rightarrow A \triangleright (B \land \Box \neg A)$
- (M_0) $A \triangleright B \rightarrow (\Diamond A \land \Box C) \triangleright (B \land \Box C)$
- (P) $A \triangleright B \rightarrow \Box (A \triangleright B)$
- (M) $A \triangleright B \rightarrow (A \land \Box C) \triangleright (B \land \Box C)$.

^{*}Research supported by the Netherlands Organization for Scientific Research (NWO).