Notre Dame Journal of Formal Logic Volume 33, Number 2, Spring 1992

On Generic Structures

D.W. KUEKER and M. C. LASKOWSKI

Abstract We discuss many generalizations of Fraissé's construction of countable 'homogeneous-universal' structures. We give characterizations of when such a structure is saturated and when its theory is ω -categorical. We also state very general conditions under which the structure is atomic.

1 Introduction In this paper we investigate variations on the classical construction of countable homogeneous-universal structures from appropriate classes of finite structures. The most basic result here is the following theorem of Fraissé [1]:

Theorem 1.1 Let K be a class of finite structures in a finite, relational language that is closed under isomorphism and substructure. Assume further that K satisfies the joint embedding property and amalgamation. Then,

- 2. the complete theory of the structure α in (1) is ω -categorical.

It is easy to see that (1) holds also for countably infinite relational languages provided K contains only countably many isomorphism types, but (2) may fail in this context. If K is not closed under substructure then the same basic argument establishes a variant of (1) in which α satisfies a weaker sort of homogeneity (called *pseudo-homogeneity* by Fraissé); here too (2) may fail, even if the language is finite. More recently, Hrushovski [3,4] has used a construction that generalizes the basic construction by replacing substructure by stronger relations.

In this paper we unify all of these variations in a single framework (allowing also functions and constants in the language). We refer to the resulting structures as *generic* rather than as homogeneous-universal. We then investigate some properties of these generics. Ever since Morley-Vaught there has been a tendency to view homogeneous-universal structures as analogues of saturated models. The

Received December 3, 1990; revised January 20, 1992