The Hanf Numbers of Stationary Logic II: Comparison with Other Logics

SAHARON SHELAH*

Abstract We show the ordering of the Hanf number of $\mathcal{L}_{\omega,\,\omega}(wo)$ (well ordering) $\mathcal{L}_{\omega,\,\omega}^c$ (quantification on countable sets), $\mathcal{L}_{\omega,\,\omega}(aa)$ (stationary logic), and second-order logic has no more restraints provable in ZFC than previously known (those independence proofs assume CON(ZFC only)). We also get results on corresponding logics for $\mathcal{L}_{\lambda,\,\mu}$.

OIntroduction The stationary logic, denoted by $\mathfrak{L}(aa)$ was introduced by Shelah [8]. Barwise, Kaufman, and Makkai [1] make a comprehensive research on it, proving for it the parallel of the good properties of $\mathfrak{L}(Q)$. There has been much interest in this logic, being both manageable and strong (see Kaufman [5] and Shelah [10]).

Later some properties indicating its affinity to second-order logic were discovered. It is easy to see that countable cofinality logic is a sublogic of $\mathcal{L}(aa)$. By [10], for pairs φ, ψ of formulas in $\mathcal{L}_{\omega,\omega}(Q_{\aleph_0}^{ef})$, satisfying $\vdash \varphi \to \psi$ there is an interpolant in $\mathcal{L}(aa)$. By Kaufman and Shelah [6], for models of power $> \aleph_1$, we can express in $\mathcal{L}_{\omega,\omega}(aa)$ quantification on countable sets. Our main conclusion is (on the logics see Definition 1.1 or the abstract, on h, the Hanf numbers, see Definition 1.2):

Theorem 0.1 The only restriction on the Hanf numbers of $\mathcal{L}_{\omega,\omega}(wo)$, $\mathcal{L}_{\omega,\omega}^{c}$, $\mathcal{L}_{\omega,\omega}(aa)$, $\mathcal{L}_{\omega,\omega}^{H}$ are:

(a)
$$h(\mathfrak{L}_{\omega,\omega}(wo)) \leq h(\mathfrak{L}_{\omega,\omega}^c) \leq h(\mathfrak{L}_{\omega,\omega}(aa)) \leq h(\mathfrak{L}_{\omega,\omega}^{II})$$

(b) $h(\mathfrak{L}_{\omega,\omega}^c) < h(\mathfrak{L}_{\omega,\omega}^{II})$.

Proof: See 2.1 (neccessity), 2.2, 2.4, 2.5, and 3.3 (all five possibilities are consistent).

The independence results are proved assuming CON(ZFC) only and the re-

^{*}The author would like to thank the BSF and NSREC for partially supporting this work.