On Π_1^0 Classes and their Ranked Points

ROD DOWNEY

Abstract We answer a question of Cenzer and Smith by constructing a nonzero degree each of whose members is a rank one point of a Π_1^0 class. The technique of proof is a rather unusual full approximation argument. This method would seem to have other applications.

1 Introduction In this paper, we solve a problem of Cenzer and Smith [3] concerning ranked points for Π_1^0 classes in 2^{ω} . Here the reader should recall that a member (point) of a Π_1^0 class *P* is called *ranked* if, for some ordinal $\alpha, x \notin D^{\alpha}(P)$ where D^{α} denotes the α -th Cantor-Bendixon derivative. This is defined via

$${}^{\circ}D(P) = \{x \in P : x \in Cl(P - \{x\})\}$$
$$D^{0}(P) = P, D^{\alpha+1}(P) = D(D^{\alpha}(P)), \text{ and}$$
$$D^{\alpha}(P) = \bigcap_{\beta < \alpha} D^{\beta}(P) \text{ for } \alpha \text{ a limit ordinal.}$$

The rank of a ranked point y in P is the least α with $y \notin D^{\alpha+1}(P)$, and the rank of y is the minimum rank in all P such that y is a ranked point in P. Ranked points in Π_1^0 classes have been extensively investigated in, for example, Jockusch and Soare [6,7], Clote [4], Cenzer et al. [1,2], and Cenzer and Smith [3]. It is known that all Δ_2 degrees contain ranked points [3], but not all points can be ranked. For example, all the nontrivial iterated jumps of \emptyset cannot be ranked and all hyperimmune degrees (see Section 2) contain unranked points.

These results left the following question open: do all degree $\neq 0$ contain unranked points? In Section 2 we answer this question by showing that:

Theorem There is a completely ranked degree below 0", that is, there exists a with 0 < a < 0" such that if $A \in a$ then A is ranked. Indeed for all $B \leq_T A$, B has rank ≤ 1 .*

^{*}The author thanks Richard Shore for pointing out that this stronger conclusion follows from the proof in §2.