Notre Dame Journal of Formal Logic Volume 32, Number 3, Summer 1991

Some Independence Results Related to the Kurepa Tree

RENLING JIN

Abstract By an ω_1 -tree we mean a tree of power ω_1 and height ω_1 . Under the assumption of *CH* plus $2^{\omega_1} > \omega_2$ we call an ω_1 -tree a Jech-Kunen tree if it has κ many branches for some κ strictly between ω_1 and 2^{ω_1} . We call an ω_1 -tree being ω_1 -anticomplete if it has more than ω_1 many branches and has no subtrees which are isomorphic to the standard ω_1 -complete binary tree. In this paper we prove that: (1) It is consistent with *CH* plus $2^{\omega_1} > \omega_2$ that there exists an ω_1 -anticomplete tree but no Jech-Kunen trees or Kurepa trees; (2) It is independent of *CH* plus $2^{\omega_1} > \omega_2$ that there exists a Jech-Kunen tree without Kurepa subtrees; (3) It is independent of *CH* plus $2^{\omega_1} > \omega_2$ that the exist a Kurepa tree without Jech-Kunen subtrees. We assume the existence of an inaccessible cardinal in some of our proofs.

Let T be a tree. For an ordinal α , T_{α} is the α -th level of T and $T \mid \alpha = \bigcup_{\beta < \alpha} T_{\beta}$. Let ht(T), the height of T, be the smallest ordinal λ such that $T_{\lambda} = \emptyset$. By a branch of T we mean a linearly ordered subset of T which intersects every nonempty level of T. Let $\mathfrak{B}(T) = \{B: B \text{ is a branch of } T\}$. For a $t \in T$ let $T(t) = \{s \in T: s \text{ and } t \text{ are comparable}\}.$

Let T be a tree. We recall that:

T is an ω_1 -tree if $|T| = \omega_1$ and $ht(T) = \omega_1$. Without loss of generality we sometimes assume that $\langle T, \leq_T \rangle = \langle \omega_1, \leq_T \rangle$ with unique root 0 if T is an ω_1 -tree.

An ω_1 -tree T is called a *Kurepa tree* if $|T_{\alpha}| < \omega_1$ for any $\alpha < \omega_1$ and $|\mathfrak{B}(T)| > \omega_1$.

An ω_1 -tree T is called a Jech-Kunen tree if $\omega_1 < |\mathfrak{B}(T)| < 2^{\omega_1}$.

T' is a subtree of *T* if $T' \subseteq T$ and $\leq_{T'} = \leq_T \cap T' \times T'$ (*T'* inherits the order of *T*). For an ordinal λ we call $\langle 2^{<\lambda}, \subseteq \rangle$ a standard λ -complete binary tree. A tree is called a λ -complete binary tree if it is isomorphic to $\langle 2^{<\lambda}, \subseteq \rangle$. A subtree *T'* of *T* is called closed downward if for any $t' \in T'$, $\{t \in T: t <_T t'\} \subseteq T'$.

An ω_1 -tree T is called an ω_1 -anticomplete tree if $|\mathfrak{B}(T)| > \omega_1$ and T has no ω_1 -complete binary subtrees.

Received August 8, 1990; revised January 29, 1991

448