# The Cardinality of Powersets in Finite Models of the Powerset Axiom 

ALEXANDER ABIAN and WAEL A. AMIN


#### Abstract

It is shown that in a finite model of the set-theoretical Powerset axiom a set $s$ and its powerset $\mathcal{P}(s)$ have the same number of elements. Additional results are also derived.


Let $(F, \epsilon)$ be a finite model of the set-theoretical Powerset axiom, i.e., in $(F, \epsilon)$ every set has a powerset.

For instance, let us consider the finite model ( $M, \epsilon$ ) whose domain consists of the four sets $a, b, c, d$ and where the $\epsilon$-relation is defined by:

$$
\begin{equation*}
a=\{b\}, \quad b=\{a\}, \quad c=\{a, b, c\}, \quad d=\{a, b, c, d\} \tag{1}
\end{equation*}
$$

It can be readily verified that ( $M, \epsilon$ ) is a model of the Powerset axiom. To this end, we have only to verify that every one of the sets $a, b, c, d$ of the model $(M, \epsilon)$ has a powerset in $(M, \epsilon)$. For instance, to show that the powerset $\mathcal{P}(c)$ of $c$ exists in $(M, \epsilon)$, we must show that all the subsets of $c$ which exist in $(M, \epsilon)$ are collected by a set of $(M, \epsilon)$. As (1) shows, $c=\{a, b, c\}$ and therefore, from the point of view of the standard ZF set theory, $c$ has $2^{3}=8$ subsets given by: $\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}$. On the other hand, as (1) shows, of these 8 subsets of $c$ only 3 , namely $\{a\},\{b\},\{a, b, c\}$ are present in the model $(M, \epsilon)$. Again, as (1) shows, these 3 sets are respectively $b, a, c$ and are collected in the model ( $M, \epsilon$ ) by the set $c$. Thus, we conclude that $c$ is the powerset of $c$ in the model ( $M, \epsilon$ ).

We observe that in the standard ZF set theory if a set has $n$ elements then it has $2^{n}$ subsets. This is due to the fact that besides the Powerset axiom, ZF has other axioms which imply the existence of $2^{n}$ subsets for a set with $n$ elements. By contrast, here we are considering finite set theoretical models and only the Powerset axiom, and we prove that in such models a set with $n$ elements has $n$ subsets.

