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The Cardinality of Powersets in Finite Models

of the Powerset Axiom

ALEXANDER ABIAN and WAEL A. AMIN

Abstract It is shown that in a finite model of the set-theoretical Powerset
axiom a set s and its powerset (P(s) have the same number of elements. Ad-
ditional results are also derived.

Let ( ^ e ) b e a finite model of the set-theoretical Powerset axiom, i.e., in
(F,e) every set has a powerset.

For instance, let us consider the finite model (M, e) whose domain consists
of the four sets a,b,c,d and where the e-relation is defined by:

(1) a=lb], b={a}, c={a9b,c}9 d={a,b,c,d}.

It can be readily verified that (M, e) is a model of the Powerset axiom. To
this end, we have only to verify that every one of the sets α, b, c, d of the model
(M,e) has a powerset in (M,e). For instance, to show that the powerset (P(c)
of c exists in (M, e), we must show that all the subsets of c which exist in (M, e)
are collected by a set of (M,e). As (1) shows, c = [a,b,c] and therefore, from
the point of view of the standard ZF set theory, c has 2 3 = 8 subsets given by:
0 , {a}9 [b}9 {c}, {a,b}, {a,c}, {b,c}, {a,b,c}. On the other hand, as (1)

shows, of these 8 subsets of c only 3, namely [a], [b}9 {a,b,c} are present in
the model (M,e). Again, as (1) shows, these 3 sets are respectively b,a,c and are
collected in the model (M, €) by the set c. Thus, we conclude that c is the power-
set of c in the model (M, e).

We observe that in the standard ZF set theory if a set has n elements then it
has 2n subsets. This is due to the fact that besides the Powerset axiom, ZF has
other axioms which imply the existence of 2n subsets for a set with n elements.
By contrast, here we are considering finite set theoretical models and only the
Powerset axiom, and we prove that in such models a set with n elements has n
subsets.
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