Notre Dame Journal of Formal Logic Volume 32, Number 1, Winter 1991

Stability for Pairs of Equivalence Relations

CARLO TOFFALORI

Abstract We consider pairs of equivalence relations E_0, E_1 such that, for some nonnegative integer h, every class of the join of E_0 and E_1 contains at most h classes of either E_0 or E_1 . We classify these structures under categoricity (in some infinite power), nonmultidimensionality and finite cover property.

I Let *T* be a countable complete first-order theory with no finite models. As usual, we assume that all models of *T* are elementary substructures of some big model *U* (the universe of *T*). Our aim is to study stability for theories *T* of two equivalence relations E_0, E_1 , with particular attention to the problem of classifying among them the ones that are categorical in \aleph_0 or in \aleph_1 .

Notice that in the simple case $E_0 = E_1$, hence when there is a unique equivalence relation, the situation is quite clear. In fact T is ω -stable and one can easily prove:

Theorem 1 Let T be the theory of an equivalence relation E. Then the following propositions are equivalent:

- 1. *T* is \aleph_0 -categorical
- 2. T does not satisfy the finite cover property (f.c.p.)
- 3. there is $k \in \omega$ such that, for all $a \in U$, E(U,a) has either $\leq k$ or infinitely many elements.

Since, for every theory T, T's being \aleph_1 -categorical implies T's being nmd and ω -stable (where 'nmd' signifies nonmultidimensionality), and this implies T's being ω -stable and without the f.c.p., it follows that, in the case of a unique equivalence relation,

T is \aleph_1 -categorical \Rightarrow T is \aleph_0 -categorical.

Received January 17, 1989; revised September 25, 1989

112

I thank the referee for suggesting several improvements. This paper is a little but heart-felt tribute to Maria Cristina.