Enumerations of Turing Ideals with Applications

DAVID MARKER*

Abstract We examine enumerations of ideals in the Turing degrees and give several applications to the model theory of first- and second-order arithmetic.

A Turing ideal is a collection of subsets of ω closed under Turing reducibility and join. If I is a countable Turing ideal we say that E is an *enumeration* of I if and only if $I = \{E_n : n \in \omega\}$ where $E_n = \{m : \langle n, m \rangle \in E\}$. Enumerations of Turing ideals play an important role in the study of degrees coding recursively saturated models of Peano Arithmetic (see [5]). Our goal in this paper is to point out some simple facts about enumerations of Turing ideals and examine their consequences in the model theory of first- and second-order arithmetic.

1 ω -incompleteness theorems We consider three subsystems of second-order arithmetic, RCA_0 , ACA_0 , and WKL_0 . RCA_0 is axiomatized by P^- (Peano Arithmetic without the induction axioms), the axiom of extensionality and the schemas of Σ_1^0 -induction and recursive comprehension. WKL_0 is obtained from RCA_0 by adding an axiom saying every infinite subtree of $2^{<\omega}$ has an infinite path. ACA_0 is obtained from RCA_0 by adding the schema of arithmetic comprehension. For further information on these theories the reader should consult [7].

Our recent interest in this subject was motivated by considering the following incompleteness theorem of Steel.

Theorem 1.1 (Steel [9]) Let T be an ω -consistent arithmetic extension of ACA_0 . There is an ω -model M of T such that $M \models$ "there is no ω -model of T".

Thus even in ω -logic T does not prove its own ω -consistency. Steel's result is actually much stronger. Suppose $\mathbf{M} = (\omega, X)$ and $\mathbf{N} = (\omega, Y)$ are models of RCA_0 . We say that $\mathbf{M} \gg \mathbf{N}$ if and only if there is $E \in X$ an enumeration of Y. If $\mathbf{M} \models$ "there is an ω -model of T", then there is an $E \in X$ such that $\mathbf{N} =$

Received April 12, 1989; revised June 20, 1989

^{*}Partially supported by an NSF grant.