Negative Membership

WAYNE D. BLIZARD*

Abstract

Generalized sets whose characteristic functions may assume any integer value, positive or negative, are formalized in a first-order two-sorted theory MSTZ which contains an exact copy of ZFC and is relatively consistent.

Introduction By negative membership we mean the fact of belonging to a collection of objects a negative number of times. This concept extends the notion of belonging to a collection of objects any positive number of times, which has been formalized using multisets (see Blizard [1] and [2]). A multiset, or mset, is a collection of objects, called elements, in which elements are allowed to repeat. The number of times an element repeats in a multiset is called its multiplicity. The cardinality of a multiset is the sum of the multiplicities of its elements. In the multiset $[c, a, b, a, a, b]$ the element a has multiplicity $3, b$ has multiplicity 2 , and c has multiplicity 1 . We denote this multiset by $[a, b, c]_{3,2,1}$. The cardinality of $[a, b, c]_{3,2,1}$ is 6 . A set is a multiset in which each element has multiplicity 1 . We denote the set $[c, a, b]_{1,1,1}$ by $\{a, b, c\}$. It is assumed that elements of multisets have finite multiplicities but that the number of distinct elements in a multiset need not be finite. The concept of negative membership, or negative multiplicity, has been used and investigated in the literature (see [4], [6], [10], [16], [17], and [18]). We develop a first-order two-sorted theory MSTZ for multisets in which elements may have integer multiplicities (positive, negative, or zero). In MSTZ, $[a, b, c]_{-1,2,-4}$ denotes the unique multiset containing -1 copies of a, two copies of b, and -4 copies of c. The theory MSTZ is a generalization of the theory MST (see [1] and [2]). We show that MSTZ contains an exact copy of ZFC and that MSTZ is relatively consistent.

[^0]
[^0]: *This research was supported by the Natural Sciences and Engineering Research Council of Canada.

