
442

Notre Dame Journal of Formal Logic
Volume 30, Number 3, Summer 1989

Propositionαl Functions and Families of Types

JAN M. SMITH*

Abstract When specifying the task of a computer program, it is often nat-
ural to use recursion on a data type. In Martin-Lόf's type theory, a universe
must be used when defining a propositional function by recursion. Using a
logical framework for type theory, formulated by Martin-Lόf, an extension
of type theory is proposed by which propositional functions can be directly
defined without using a universe.

1 Introduction In order to capture some programmers' errors several com-
puter languages, like Pascal and ML, are equipped with a type system. Using
the Curry-Howard interpretation of propositions as types (see [4] and [8]), or,
as we shall say here, propositions as sets, a type system can be made strong
enough to be used to specify the task a program is supposed to do. This is one
of the bases for Martin-Lόf s suggestion in [12] to use his formulation of type
theory for programming; his ideas are exploited in [14] and there are several
computer implementations of type theory (see [3] and [16]). Similar ideas are
also behind Coquand and Huet's calculus of constructions [2].

The idea of propositions as sets is closely related to the intuitionistic expla-
nations of the logical constants given by Heyting [7]. In Martin-Lόf's type theory
the interpretation of propositions as sets is fundamental, since the notions of
proposition and set are identical. So a logical constant is definitionally equiv-
alent to the corresponding set constant. Conversely, every set forming opera-
tion can be viewed as a logical constant, although some sets are more natural
to think of as data types.

When using Martin-Lόf's type theory for programming one often has to
use strong principles, such as a universe or well-orderings, when writing speci-
fications or defining data types. For instance, a universe must be used when

*The convenient possibility of defining propositions by induction on sets has been made
clear for a long time by people using type theory as a programming logic. For the exten-
sion proposed here I am particularly indebted to Per Martin-Lόf, Bengt Nordstrom, and
Kent Petersson for many discussions.

Received April 13, 1989


