Notre Dame Journal of Formal Logic Volume 30, Number 1, Winter 1989

Some Modal Logics Based on a Three-Valued Logic

OSAMU MORIKAWA

1 Introduction A K-modal logic based on Łukasiewicz's three-valued logic has been formulated by Schotch [2]. In this paper we formulate K-, M-, S4-, and S5-modal logics based on a general three-valued logic by using the notion of a matrix in [3].

In Section 2, we define truth values, formulas, and matrices. In Section 3, we introduce three-valued Kripke models defined in [1]. In Section 4, we present the systems K, M, S4, and S5 of modal logic based on a general three-valued logic (3- K_3 , 3- K_2 , 3- M_3 , 3- M_2 , 3- $S4_3$, 3- $S4_2$, 3- $S5_3$, and 3- $S5_2$). 3- K_3 , 3- M_3 , 3- $S4_3$, and 3- $S5_3$ are modal logics based on a three-valued logic in which the modal operators take on all three of our truth-values. 3- K_2 , 3- M_2 , 3- $S4_2$, and 3- $S5_2$ are modal logics based on a three-valued logic in which the modal operators take only the two classical truth-values. In Section 5, we develop the syntax of 3- K_i , 3- M_i , 3- $S4_i$, and 3- $S5_i$ (i = 2,3) and it will be shown that the cut-elimination theorems no longer hold in 3- K_i , 3- M_i , 3- $S4_i$, and 3- $S5_i$. In Section 6, we prove the completeness theorems for 3- K_i , 3- M_i , 3- $S4_i$, and 3- $S5_i$.

2 Matrices

2.1 Truth values We take 1, 2, and 3 as truth-values. Intuitively '1' stands for 'true' and '3' for 'false', whereas '2' may be interpreted as 'undefined' or 'meaningless'.

We denote the set of all the truth values by T. $T = \{1, 2, 3\}$.

2.2 Primitive symbols

- (1) Propositional variables: p, q, r, etc.
- (2) Propositional connectives:

$$F_i(*_1,\ldots,*_{\alpha_i})=i=1,2,\ldots,\beta,\alpha_i\geq 1.$$

Received October 28, 1985; revised August 28, 1986 and April 9, 1987