Some Modal Logics Based on
 a Three-Valued Logic

OSAMU MORIKAWA

1 Introduction A K-modal logic based on Łukasiewicz's three-valued logic has been formulated by Schotch [2]. In this paper we formulate K-, M-, $S 4$-, and $S 5$-modal logics based on a general three-valued logic by using the notion of a matrix in [3].

In Section 2, we define truth values, formulas, and matrices. In Section 3, we introduce three-valued Kripke models defined in [1]. In Section 4, we present the systems $K, M, S 4$, and $S 5$ of modal logic based on a general threevalued logic ($3-K_{3}, 3-K_{2}, 3-M_{3}, 3-M_{2}, 3-S 4_{3}, 3-S 4_{2}, 3-S 5_{3}$, and $3-S 5_{2}$). 3- K_{3}, 3- $M_{3}, 3-S 4_{3}$, and 3-S5 5_{3} are modal logics based on a three-valued logic in which the modal operators take on all three of our truth-values. 3- $K_{2}, 3-M_{2}, 3-S 4_{2}$, and $3-S 5_{2}$ are modal logics based on a three-valued logic in which the modal operators take only the two classical truth-values. In Section 5, we develop the syntax of $3-K_{i}, 3-M_{i}, 3-S 4_{i}$, and $3-S 5_{i}(i=2,3)$ and it will be shown that the cut-elimination theorems no longer hold in $3-K_{i}, 3-M_{i}, 3-S 4_{i}$, and 3-S5 5_{i}. In Section 6, we prove the completeness theorems for $3-K_{i}, 3-M_{i}, 3-S 4_{i}$, and $3-S 5_{i}$.

2 Matrices

2.1 Truth values We take 1, 2, and 3 as truth-values. Intuitively ' 1 ' stands

 for 'true' and ' 3 ' for 'false', whereas ' 2 ' may be interpreted as 'undefined' or 'meaningless'.We denote the set of all the truth values by $\mathbf{T} . \mathbf{T}=\{1,2,3\}$.

2.2 Primitive symbols

(1) Propositional variables: p, q, r, etc.
(2) Propositional connectives:

$$
F_{i}\left(*_{1}, \ldots, *_{\alpha_{l}}\right)=i=1,2, \ldots, \beta, \alpha_{i} \geqq 1 .
$$

