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Abstract We prove that it is consistent that there exists a subgroup of the
symmetric group Sym(λ) which is not included in a maximal proper sub-
group of Sym(λ). We also consider the question of which subgroups of
Sym(λ) stabilize a nontrivial ideal on λ.

I Introduction The work in this paper was motivated by the following ques-
tion, which was raised by Peter Neumann. If λ > ω, does every proper subgroup
of Sym(λ) lie in a maximal subgroup of Sym(λ) ? While a positive answer seems
very unlikely, all of the results up to this point have concerned sufficient con-
ditions for a subgroup G < Sym(λ) to lie in a maximal subgroup of Sym(λ).
For example, the main theorem in MacPherson and Praeger [3] states that if
G < Sym(ω) is not highly transitive, then G is contained in a maximal subgroup.
In Section 2, we shall prove the following result.

Theorem 1 (Fλ) There exists a subgroup G < Sym(λ) such that the set L =
[H\ G < H < Sym(λ)} is a well-ordering under inclusion of order-type 2 λ. In
particular, G is not contained in a maximal subgroup of Sym(λ).

It is not known whether this theorem can be proved in ZFC. Our extra
hypothesis F\ is the following statement. Let Sym< λ(λ) be the group of all per-
mutations TΓ of λ such that |Mov(ττ)| < λ, where Mov(7r) = {a \ aπ Φ α}. Let
S(λ) = Sym(λ)/Sym<λ(λ).

(Fλ) If T< S(λ) is a subgroup with \T\ < 2λ, then there exists an element
of infinite order TΓ G 5(λ)\Γsuch that <Γ,τr> = Γ* <ττ>.

Here * denotes the free product. We shall also show that Fλ is consistent with
but independent of ZFC.

Another result from [3] states that if /is a nontrivial ideal on λ which con-
tains a set X with \X\ = \λ\X\ = λ, and G < S{1] = {TΓ E Sym(λ) \Γ = /},
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