On the Proofs of Arithmetical Completeness for Interpretability Logic

DOMENICO ZAMBELLA

Abstract

Visser proved that ILP is the interpretability logic of any finitely axiomatizable theory containing I $\Delta_{0}+$ SUPEXP, Berarducci and Shravrukov proved that ILM is the interpretability logic of PA. But these proofs are not based directly on the natural semantics of interpretability logic (i.e., Veltman models). We give simpler alternative proofs of the arithmetical completeness of ILP and ILM directly based on finite Veltman models. We will provide a general setup for arithmetical completeness proofs of interpretability logic which is in the style of Solovay's arithmetical completeness proof of provability logic.

1 Introduction Visser [7] introduced the binary modal logic IL (interpretability logic) and its extensions ILM (interpretability logic with Montagna's axiom) and ILP (interpretability logic with a persistent relation in its models) to describe the interpretability logic of PA and the interpretability logic of any sufficiently strong theory T which is finitely axiomatizable and Σ_{1} sound. The modal completeness of IL, ILP, and ILM was provided by de Jongh and Veltman [3] using so-called Veltman models. These are a very natural generalization of Kripke models. Visser [8] obtained the arithmetical completeness for ILP and, more recently, Berarducci [1] and Shavrukov [5] have shown ILM to be complete for arithmetical interpretation over PA. All these proofs of arithmetical completeness do not directly use the Veltman models. Using a bisimulation, Visser [8] showed ILP to be modal complete with respect to his so-called Friedman models and then used these to prove arithmetical completeness. Berarducci and Shravrukov also used a bisimulation due to Visser [7] showing that ILM is modal complete with respect to the so-called simplified models to prove arithmetical completeness. The use of simplified models in proving arithmetical completeness for ILM adds a complication because in general these cannot be taken to be finite.

