Notre Dame Journal of Formal Logic Volume VIII, Number 4, October 1967

ALTERNATIVE COMPLETENESS THEOREMS FOR MODAL SYSTEMS

M. J. CRESSWELL

Since the development of semantics for the modal systems T, S4 and S5 notably in [1] there have appeared several completeness theorems for these systems. Some, e.g. $[1]^1$ rely on the method of semantic tableaux which are shewn to give a decision procedure. A simpler proof, though one not yielding to decision procedure, follows from $[3]^2$. In part I of this paper we shew, by extensions of known results, some relations between the completeness of S5, S4 and T. In part II we shew how Anderson's [5] decision procedure for T can yield a relatively simple completeness proof for that system.

I. The system T (v.[6]) is a system of propositional modal logic based on the following additions to some standard axiomatic basis for the propositional calculus, (*L* for necessity);

LA1 $Lp \supset p$ LA2 $L(p \supset q) \supset (Lp \supset Lq)$ LR1 $\vdash \alpha \rightarrow \vdash L\alpha$

S4 is T with the addition of

LA3 $Lp \supset LLp$

S5 is T with the addition of

LA4 $\sim Lp \supset L \sim Lp$

We define validity in T, S4, and S5 in the manner of [1] as truth in all T, S4, S5 models. A T-model is an ordered triple $\langle VWR \rangle$ where W is a set of objects (worlds), R a reflexive relation over W, and V a function (assignment) taking as arguments a.) wffs of T b.) members of W and as values the truth values 1 or 0, and satisfying the following:

Received February 20, 1966