Notre Dame Journal of Formal Logic Volume VIII, Number 4, October 1967

PURE NUMERICAL BOOLEAN SYLLOGISMS

EDWARD A. HACKER and WILLIAM TUTHILL PARRY

A. Undefined notions.

- 1. Let a, b, c, d, etc. be general terms (which may be empty).
- 2. Let m, n, and q be integers greater than or equal to zero.
- 3. $A^+n bc$, read: "At most n b are not c."
- 4. I⁺n bc, read: "More than n b are c."

B. Definitions.

1. \mathbf{E}^+ n bc = df ~ \mathbf{I}^+ n bc

"At most n b are c" means "Not more than n b are c."

2. $O^+n bc = df \sim A^+n bc$

"More than n b are not c" means "It is false that at most n b are not c."

(3-6) Standard categorical forms (Boolean interpretation):

3. A $bc = df A^+ 0 bc$

"Every b is c" means "At most zero b are not c."

- 4. $Ebc = df E^+0 bc$
- 5. bc = df + 0 bc
- 6. Obc = df O+0 bc
- 7. A^+ and E^+ forms are called *quasi-universal*, I^+ and O^+ *particular*.
- 8. A numerical argument is called *pure* when all its propositions have quantifiers.¹
- C. Immediate inferences.
 - 1. Contradictories:
 - a. $A^+n bc$ and $O^+n bc$ are contradictories.
 - b. $E^+n bc$ and $I^+n bc$ are contradictories.
 - 2. Contraries:
 - a. $A^+n \ bc$ and $O^+m \ bc$ are contraries iff m > n.
 - b. $E^{+}n \ bc$ and $I^{+}m \ bc$ are contraries iff m > n.

Received December 30, 1965.