REGRESSIVE FUNCTIONS AND COMBINATORIAL FUNCTIONS

CARL E. BREDLAU

1. *Introduction.** Let ε denote the set of all non-negative integers and let ε* denote the set of all integers. Every function *f(n)* from ε into ε uniquely determines a function c_i from ε into ε^* such that

(1)
$$
f(n) = \sum_{i=1}^{n} c_i \binom{n}{i}, \quad \text{for } n \in \mathbb{E}.
$$

The function *f(n)* is called *combinatorial* if the function *Ci* related to *f(n)* by (1) assumes no negative values. The function *C{* is called the *associated function* of $f(n)$. The function c_i can be explicitly expressed in terms of the function $f(n)$ by the formula:

(2)
$$
c_n = \sum_{i=1}^n (-1)^i \binom{n}{i} f(n-i).
$$

Combinatorial functions were introduced by Myhill in a set-theoretic man ner in [3] and play a fundamental role in the theory of recursive equivalence types; however, in what follows we need only the number-theoretic defini tion of a combinatorial function given above.

We note that if c_i is an effectively computable function (or formally, a recursive function), so is $f(n)$. For given *n* we can effectively calculate c_0, \ldots, c_n and hence $f(n)$ by (1). Conversely, if $f(n)$ is a recursive com binatorial function, we can, given *n*, compute $f(0)$, ..., $f(n)$, and hence c_n by (2). Thus c_i is a recursive function if $f(n)$ is. We conclude that for a combinatorial function *f(n),*

$$
f(n)
$$
 is recursive \iff c_i is recursive.

A function t_n from ε into ε is *regressive*, if it is one-to-one (1-1) and there exists a partial recursive function $p(x)$ such that

(3) $\rho t \subset \delta p$,

(4)
$$
(\forall n) [p(t_n) = t_{n-1}].
$$

[•]Research on this paper was done during 1964-65 under the direction of Dr. J. C. E. Dekker, while the author was a Henry Rutgers Scholar.