REGRESSIVE FUNCTIONS AND COMBINATORIAL FUNCTIONS

CARL E. BREDLAU

1. Introduction.* Let ε denote the set of all non-negative integers and let ε^* denote the set of all integers. Every function f(n) from ε into ε uniquely determines a function c_i from ε into ε^* such that

(1)
$$f(n) = \sum_{i=1}^{n} c_i \binom{n}{i}, \quad \text{for } n \in \varepsilon.$$

The function f(n) is called *combinatorial* if the function c_i related to f(n) by (1) assumes no negative values. The function c_i is called the *associated* function of f(n). The function c_i can be explicitly expressed in terms of the function f(n) by the formula:

(2)
$$c_n = \sum_{i=1}^n (-1)^i \binom{n}{i} f(n-i).$$

Combinatorial functions were introduced by Myhill in a set-theoretic manner in [3] and play a fundamental role in the theory of recursive equivalence types; however, in what follows we need only the number-theoretic definition of a combinatorial function given above.

We note that if c_i is an effectively computable function (or formally, a recursive function), so is f(n). For given n we can effectively calculate c_0, \ldots, c_n and hence f(n) by (1). Conversely, if f(n) is a recursive combinatorial function, we can, given n, compute $f(0), \ldots, f(n)$, and hence c_n by (2). Thus c_i is a recursive function if f(n) is. We conclude that for a combinatorial function f(n),

$$f(n)$$
 is recursive \iff c_i is recursive.

A function t_n from ϵ into ϵ is *regressive*, if it is one-to-one (1-1) and there exists a partial recursive function p(x) such that

(3)
$$\rho t \subset \delta p,$$
(4)
$$(\forall n) [p(t_n) = t_{n-1}].$$

^{*}Research on this paper was done during 1964-65 under the direction of Dr. J. C. E. Dekker, while the author was a Henry Rutgers Scholar.