A Smart Child of Peano's

V. Yu. SHAVRUKOV

Abstract We calculate the provability logic of a special form of the Feferman provability predicate together with the usual provability predicate of Peano Arithmetic. In other words, we construct a bimodal system with the intended interpretation of the expression $\Box \varphi$ being as usual the formalization of " φ is provable in PA" and the new modal operator \triangle standing, when applied to φ , for "there exists an x s.t. I Σ_x is consistent and proves φ ". The new system is called **LF**. We construct a Kripke semantics for **LF** and prove the arithmetical completeness theorem for this system. A small number of other issues concerning the Feferman predicate, such as uniqueness of gödelsentences for \triangle , is also considered.

1 Introduction The Feferman provability predicate for reflexive recursively axiomatized theories emerged for the first time in Feferman's paper [2]. Starting with a reflexive theory, Peano Arithmetic PA being the conventional example, one chooses a sequence of finitely axiomatized theories $(PA[n)_{n\in\omega})$ with PA[n + 1] extending PA[n], and $PA = \bigcup_{n\in\omega} PA[n]$.

Outside modal-logical contexts, let us write \triangle for the Feferman predicate reserving the shorthand \Box for the usual provability predicate. $\triangle \varphi$ is then defined as the formalization of

"there exists an $x \in \omega$ s.t. PA[x is consistent and PA[$x \vdash \varphi$ ".

The sequence $(PA[n)_{n \in \omega}$ is called the *base sequence* for this \triangle .

The *reflexivity property* of PA translates as saying that for all $n \in \omega$ PA proves that PA[n is consistent. This was first established by Mostowski [13] and is crucial for practically all applications of Δ .

The first use of \triangle was to illustrate the relevance of the Hilbert-Bernays derivability conditions to Gödel's Second Incompleteness Theorem. The close connection of \triangle to relative interpretability became apparent in Feferman [2], Orey

Received June 30, 1993; revised February 17, 1994