Notre Dame Journal of Formal Logic Volume VII, Number 4, October 1966

THE MENGER ALGEBRAS OF 2-PLACE FUNCTIONS IN THE 2-VALUED LOGIC

PHILIP CALABRESE*

A Menger algebra of 2-place functions over a set Δ is (cf. [5]) a set \mathfrak{S} of functions mapping $\Delta \times \Delta$ into Δ , which is closed with respect to substitution or composition, i.e., has the property that, for any three functions F, G, H belonging to \mathfrak{S} , the composite function F(G,H) belongs to \mathfrak{S} . Here, F(G,H) is the function assuming the value $F(G(\mathbf{x},\mathbf{y}), H(\mathbf{x},\mathbf{y}))$ for each (\mathbf{x},\mathbf{y}) in $\Delta \times \Delta$. The purpose of this paper is to list all the Menger algebras of 2-place functions over $\{0,1\}$. The correspondence between these functions and the binary operators of the 2-valued logic is obvious.

We denote the 16 functions (cf. [1], [2]) by

	A	В	С	D	Ε	Ι	J	1	A '	B^{i}	C۱	D'	E	I۱	J'	0
(0,0)	1	0	1	1	1	0	0	1	0	1	0	0	0	1	1	0
(0,1)	1	1	1	0	0	0	1	1	0	0	0	1	1	1	0	0
(1,0)	1	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0
(1,1)	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0

The smallest Menger algebra containing, as a subset, the set of functions $\{F_1, \ldots, F_k\}$ is said to be generated¹ by $\{F_1, \ldots, F_k\}$ (cf. [1] and [3]) and is denoted by $[F_1, \ldots, F_k]$. If $[F] = \{F\}$, or, which amounts to the same, if F(F,F) = F, then F is called *idempotent* (cf. [1]). We denote the set of all 16 functions as well as the algebra consisting of these functions by \mathcal{B} . The set of the idempotent functions, that is $\{1,0,I,J,A^*,B\}$, is denoted by \mathcal{B}_0 . We further introduce an operator ν in \mathcal{B} by defining νF as the function whose value for each (x,y) in $\{0,1\} \times \{0,1\}$ is 0 or 1 according as F(x,y) is 1 or 0. An algebra is said to be ν -closed if, whenever F is in it, νF is also.

^{*}I wish to express my sincere thanks to Mr. H. I. Whitlock and Miss Helen Skala for numerous valuable suggestions.

¹It should be remembered that in this purely algebraic sense of generation, the function A (corresponding to Sheffer's stroke) generates only 4 of the 16 functions in \mathfrak{F} (cf. [1]).