Notre Dame Journal of Formal Logic Volume VI, Number 3, July 1965

A NOTE ON THE AXIOMATIZATION OF RUBIN'S SYSTEM (S)

JOHN THOMAS CANTY

Rubin, in [3], suggests that the axiomatic for system (5) may be simplified. It is here shown that

R5 If $\vdash \alpha$ in (S) then $\vdash \Box_2 \alpha$ in (S)

and

R*5 If $\vdash \alpha$ in (S) then $\vdash \Box_1 \alpha$ in (S)

are derivable from the other axioms and rules of (5).

This paper presupposes [3] and adopts the same primitive basis and definitions for (S). Thus the axioms and rules of (S) are

A1 $(\alpha \land \beta) \Longrightarrow (\beta \land \alpha)$ $(\alpha \land \beta) \Rightarrow \alpha$ A2 A3 $\alpha \Longrightarrow (\alpha \land \alpha)$ $((\alpha \land \beta) \land \gamma) \Longrightarrow (\alpha \land (\beta \land \gamma))$ A4 $\alpha \Longrightarrow \sim \sim \alpha$ A5 $A6 \quad ((\alpha \Longrightarrow \beta) \land (\beta \Longrightarrow \gamma)) \Longrightarrow (\alpha \Longrightarrow \gamma)$ $(\alpha \land (\alpha \Longrightarrow \beta)) \Longrightarrow \beta$ A7 $\Box_2 \alpha \Longrightarrow \Box_2 \Box_2 \alpha$ A8A12 $\Box_2 \alpha \Longrightarrow \Box_1 \alpha$ If $\vdash \alpha$ and $\vdash (\alpha \implies \beta)$ then $\vdash \beta$. R1 R2 If $\vdash \alpha$ and $\vdash \beta$ then $\vdash (\alpha \land \beta)$. R3 If $\vdash (\alpha \iff \beta)$ and \vdash_{γ} and δ results from γ by replacing α for β (or β for α) then $\vdash \delta$.

together with $A^{*1}-A^{*8}$, $\mathbb{R}^{*1}-\mathbb{R}^{*3}$. (*T** is the wff obtained from *T* by replacing all the " \diamond_2 's" by " \diamond_1 's".)

The following theorems, S1-S7, follow from A1-A8 and R1-R3, and their proofs can be found in $[1]^{1}$

S1	$\alpha \Rightarrow \alpha$	[12.1]
S2	$((\alpha \supset \beta) \land (\beta \supset \gamma)) \implies (\alpha \supset \gamma)$	[15.1]
S3	$\Box_2 \alpha \implies \alpha$	[18.42]
S4	$(\alpha \Rightarrow \beta) \iff \Box_2(\alpha \supset \beta)$	[18.7]

Received May 19, 1964