Notre Dame Journal of Formal Logic Volume V, Number 3, July 1964

AXIOMATISATIONS OF THE MODAL CALCULUS Q

A. N. PRIOR

R. A. Bull has shown in [1] that the modal calculus Q of [2] may be axiomatised by taking as primitives a strong and a weak necessity L and L, and by adding to PC the axioms

- A1. CLpp
- A2. CLpp
- A3. CKLpLqLKpq

and the rules (beside substitution and detachment)

- **RQ***La*: $\vdash C\beta\gamma \rightarrow \vdash C\beta L\gamma$, for β fully modalised and with all its variables occurring in γ .
- **RQ***Lb*: $\vdash C L \alpha C \beta \gamma \rightarrow \vdash C L \alpha C \beta L \gamma$, for β fully modalised and with all its variables occurring in α or γ .
- **RQL:** $\vdash C L \alpha C \beta \gamma \rightarrow \vdash C L \alpha C \beta L \gamma$, for β fully modalised and with all variables of β and γ occurring in α .

From the sufficiency of these postulates it is possible to prove the sufficiency of some other postulates for **Q** which I suggest in [3]. In these, I adopt a suggestion of J. L. Mackie and use as a primitive a functor S ("always statable"), such that Sp is equivalent, in terms of Bull's primitives, to LCpp. The other primitive I use in [3] is a possibility-operator M (in Bull's terms NLN), but Bull's weak necessity L will do just as well, and indeed makes possible a slight simplification of the postulates. Bull's Lp is definable in terms of my primitives as KSpLp. My postulates, for subjoining to **PC**, then become the one axiom A1. CLpp, and the three rules:-

- **RS1:** $\vdash CS\alpha Sp$, where p is any variable in α .
- **RS2:** $\vdash CSpCSq \ldots S\alpha$, where p, q, etc. are all the variables in α .
- **RSL:** $\vdash C\alpha\beta \rightarrow \vdash CSpCSq \ldots C\alpha L\beta$, where α is fully modalised and p, q, etc. are all the variables in β that are not in α .

In view of Bull's result, the sufficiency of these for **Q** may be shown by deducing Bull's postulates from them, including a pair of implications (CSp LCpp and C LCppSp) corresponding to the definition of S in Bull's system.

Received October 7, 1963