Notre Dame Journal of Formal Logic Volume V, Number 1, January 1964

MODAL SYSTEMS IN THE NEIGHBOURHOOD OF T

IVO THOMAS

Unpublished is the result of B. Sobociński that if we form systems T_n by adjoining to Feys's modal system T the axiom P_n : $CL^n p L^{n+1} p$ where L^n denotes a string of n L-s $(n \ge 0)$, then while obviously T_n contains T_{n+1} , the converse is not the case. Hence there are infinitely many systems between S4=T₁ and T. We now ask whether the addition of B_1 : LCpLNLNp (Lewis's C12) to T_n and T, producing T_n^+ and T^+ , similarly yields infinitely many systems between S5 = T_1^+ and T^+ , and show that this is so. Further, let SI_n^+ be the S1¹ of [1] augmented by P_n . Clearly $S1_{n+1}^+ = T_1^+ = S5$, while the matrix used in [2] ad 2 shows that if $n \ge 1$, $S1_n^+$ is a proper subsystem of T_n . Evidently, $S1_n^+$ contains $S1_{n+1}^+$. If $S1_n^+$ and $S1_{n+1}^+$ were equivalent, the addition to each of LCpMp would produce equivalent systems; but these would be T_n^+ and T_{n+1}^+ which are not equivalent. Hence $S1_{n+1}^+$ is a proper subsystem of $S1_n^+$. Since infinitely many reductions of modality thus fail in T^+ , T and $S1^+$, these all have infinitely many non-equivalent modalities, as has long been known for T.

To prove that for all n, T_n^+ is independent of T_{n+1}^+ , we interpret T_n in the domain of n + 1-sequences each place of which is filled by 1 or 2. We base the systems on N (negation), L(necessity) and C (implication). If F is N or $L, F(x_1, \ldots, x_{n+1}) = Fx_1, \ldots, Fx_{n+1}$. $Nx_i = 1$ if $x_i = 2$, $Nx_i = 2$ if $x_i = 1$. $Lx_i = 2$ if $x_{i-1} = 2$ or $x_i = 2$ or $x_{i+1} = 2$; otherwise $Lx_i = 1$. $C(x_1, x_2, \ldots, x_{n+1})$ $(y_1, y_2, \ldots, y_{n+1}) = Cx_1y_1, Cx_2y_2, \ldots, Cx_{n+1}y_{n+1}; Cx_iy_i = 2$ if $x_i = 1, y_i = 2$, otherwise $Cx_iy_i = 1$. A sequence consisting only of 1-s is designated. The reader may like to compare our version of L with those discussed in [3], pp. 23-4 and [4].

Convenient axioms and rules of T are I. Propositional calculus with rules of substitution, detachment and definition applied to II. M = def. NLN; III. From α infer $L\alpha$; A1 CLpp; A2 CLCpqCLpLq. For T⁺ we add A3 CpLNLNp, and for T⁺_n, A4 CLⁿpLⁿ⁺¹p. The method of valuation obviously satisfies I.

Ad III: If no valuation of α contains 2, the same is true of $L\alpha$.

Ad A1: For any valuation of p, Lp = 1 at any position only if p = 1 at that position.

Received January 7, 1963