In a previous paper in this journal (see [1]) I constructed a model M of a set theory such that the axiom

$$(Ey) (x) (x \in y \leftrightarrow \phi(x))$$

is valid, where $\phi(x)$ may contain some parameters z_1, \ldots, z_n and is built by conjunction and disjunction alone from atomic propositions $u \in v$, where u and v are any two of x, z_1, \ldots, z_n. In particular it was also allowed that $\phi(x)$ is just a propositional constant 0 (false) or 1 (true). In this note I shall add a few further results concerning models of set theories for which certain axioms are given. In §1 I first mention some general forms of the comprehension axiom and then prove a further theorem on the model in [1]. In §2 I give a new proof of a result in [2], where a certain 3-valued logic was considered. In §3 I show some further examples of models of set theories in ordinary 2-valued logic.

§1.

We may consider 3 forms of the axiom of comprehension. The first is that partially treated in [1], although I prefer to write it here in the form

$$(z_1) \ldots (z_n)(Ey)(x)(x \in y \leftrightarrow \phi(x, z_1, \ldots, z_n)),$$

where ϕ is either a propositional constant or built from atomic expressions $u \in v$ by negation, conjunction and disjunction and there are no further variables in ϕ than x, z_1, \ldots, z_n. The second form is

$$(z_1) \ldots (z_m)(Ey)(x)(x \in y \leftrightarrow \prod_{u_1} \ldots \prod_{u_n} \phi(x, z_1, \ldots, z_m, u_1, \ldots, u_n)),$$

where ϕ as before is built by the connectives of the propositional calculus while each \prod_{u_r} means either universal or existential quantification with regard to u_r. It may be advantageous also to consider a third form

$$(Ey)(x)(x \in y \leftrightarrow \prod_{u_1} \ldots \prod_{u_n} \phi(x, u_1, \ldots, u_n)),$$