STRUCTURAL RULES OF INFERENCE

HUGUES LEBLANC

On many occasions the following three rules:

R:
$$A \vdash A$$
 (Reflexivity),

- **E**: If $A_1, A_2, \ldots, A_n \models B$, then $A_1, A_2, \ldots, A_n, C \models B$ (Expansion),
- **P:** If $A_1, A_2, \ldots, A_{i-1}, A_i, A_{i+1}, A_{i+2}, \ldots, A_n, A_{n+1}, A_{n+2} \vdash B$, then $A_1, A_2, \ldots, A_{i-1}, A_{i+1}, A_i, A_{i+2}, \ldots, A_n, A_{n+1}, A_{n+2} \vdash B$, where $i \leq n+2$ (Permutation),

are appointed as structural rules of inference for the propositional calculus; 1 on others, **P** and the following generalization of **R**:

GR: $A_1, A_2, \ldots, A_n, A_{n+1} \vdash A_i$, where $i \leq n + 1$ (Generalized Reflexivity),

are made to serve in that capacity.² I examine here the impact of this switch from \mathbf{R} and \mathbf{E} to \mathbf{GR} upon the proving and deriving of rules of inference for the said calculus.

Let P be a (pure) propositional calculus with "~' and 'D' as primitive connectives. Let 'A', 'B', and 'C' range in the metalanguage MP of P over the wffs of P. Let (meta)statements of MP of the form 'B is implied in P by (or deducible in P from) $A_1, A_2, \ldots, and A_n$ ' be abbreviated to read ' $A_1, A_2, \ldots, A_n \vdash B$ ' and called turnstile statements or, for short, Tstatements. Let the following four rules serve as intelim rules for '~' and 'D':

- **NI:** If $A_1, A_2, \ldots, A_n, B \vdash C$ and $A_1, A_2, \ldots, A_n, B \vdash \sim C$, then $A_1, A_2, \ldots, A_n \vdash \sim B$,
- **NE**: If $A_1, A_2, \ldots, A_n \models \sim \sim B$, then $A_1, A_2, \ldots, A_n \models B$,
- **HI:** If $A_1, A_2, \ldots, A_n, B \vdash C$, then $A_1, A_2, \ldots, A_n \vdash B \supset C$,
- **HE:** If $A_1, A_2, \ldots, A_n \vdash B$ and $A_1, A_2, \ldots, A_n \vdash B \supset C$, then $A_1, A_2, \ldots, A_n \vdash C$.

Received June 14, 1962