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§0. Introduction. The purpose of this paper is to present the results of two
announcements [1], [2] and to generalize the results of two other papers
[3], [4]. The results of §1 are applicable to any general algebraic system,
i.e., nonempty set on which there is defined a nonempty index set of closed
binary composition laws. For the sake of concreteness some applications
to group and ring theories are given in §2 and §3, respectively. Some ap-
plications of the general theory to elementary number theory are given else-
where [5], [6]. Applications in the context of the algebra and logic of re-
lations of abstract mathematical biology are also given elsewhere [4].

§1. General Theory. Recall [6] that a (A, T)-mutant set of an algebraic
system (S, *) is a subset M of § that satisfies the condition M, « M, *. . .*
My C M T, where M = M, for all 7, A is an integer> 2 and T together with
* forms an algebraic subsystem of (S, *). A (A, T)-mutant set M of a system
(S, *) is said to be a maximal (A, T)-mutant set of (S, *) provided there is
no (A, T)-mutant set of (S, *) which propetly contains M.

Theorem 1.1. Every subset of a (A, T)-mutant set M of (B, *) is a (A,
T)-mutant set of (B, *).

Proof: Put A= A;andM =M, foralli. Then A, *...* Ay CM *...+*
MyCMnNTCANT for every ACM.

Theorem 1.2. Let ¢ be a homomorphism from (4, *) into (B, o). Let M
be a (A, T)-mutant set of (A, *). If (M N T) C (M) N S then ¢(M) is a
(A, S)-mutant set of (B, o).
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