Notre Dame Journal of Formal Logic Volume III, Number 3, July 1962

QUANTIFICATION AND Ł-MODALITY

A. N. PRIOR

1. The Formula $\sum a K \Delta \Theta 1 a \nabla L 1 a$ with Δ and $\nabla a s$ Variable Functors. In his paper "Arithmetic and Modal Logic", ¹ Łukasiewicz drew attention to an odd theorem which is deducible when certain arithmetical laws are subjoined to his L-modal calculus, namely the theorem (with " $\Theta a b$ " for "a = b" and "Lab" for "a < b")

5.4 $\Sigma a K \Delta \Theta 1 a \nabla L 1 a$.

What is odd about this theorem is that it holds despite the fact that, according to \mathcal{E} ukasiewicz, there exists no positive integer *a* for which $K\Delta\Theta 1a\nabla \mathbf{L} 1a$ is true. But is this really so?

It is noteworthy that while Eukasiewicz's proof of the theorem 5.4 is perfectly rigorous and formal, his proof that there is no positive integer a for which $K\Delta\Theta 1a\nabla L 1a$ holds is not, but depends on the interpretation of Δ and ∇ as constant four-valued truth-operators, and on certain truth-value calculations based on this interpretation. If, on the contrary, we interpret Δ and ∇ as variable two-valued functors with their range restricted to V and S, with ∇ taking the opposite value to Δ in any given formula,² we obtain a different result. For suppose that in the formula 5.4 we assign to Δ the value S and consequently to ∇ the value V. Then if a > 1, $K\Delta\Theta 1a\nabla L 1a =$ KSOV1 = KO1 = 0, but if a = 1, $K\Delta\Theta 1a\nabla L1a = KS1V0 = K11 = 1$; so that with this assignment of values to Δ and ∇ , there is at least one positive integer, namely 1, for which $K\Delta\Theta 1a\nabla \mathbf{L} 1a$ is true. Again, if we assign to Δ the value V and consequently to ∇ the value S, then if a = 1, $K\Delta\Theta 1a\nabla L 1a = KV1S0 =$ K10 = 0, but if a > 1, $K\Delta\Theta 1a\nabla L1a = KV0S1 = K11 = 1$. Hence for this assignment of values also, there is at least one positive integer, namely any greater than 1, for which $K\Delta\Theta 1a\nabla \mathbf{L} 1a$ is true. Hence on both possible assignments of values to Δ and ∇ , the formula 5.4 is true in its natural sense, and its appearing as a logical law, i.e. as true for all possible values of its free variables, presents no difficulties.

2. The Formula $\sum a K \Delta \Theta 1a$ $\lfloor 1a \text{ with } \Delta \text{ and } \nabla \text{ as Constant Functors.}$ It remains true, however, that the Δ and ∇ of the $\lfloor \text{-modal system } may$ be interpreted, not as above, but as constant four-valued functors; and if they are

Received December 1, 1959