RECURSIVE LINEAR ORDERINGS AND HYPERARITHMETICAL FUNCTIONS

SHIH-CHAO LIU

The main purpose of this note is to give an alternative proof to a theorem by Spector [1] which answers a question raised by Kleene [3, p. 25]. There are two by-products. The first (Theorem 1) specifies a sufficient condition for a set linearly ordered by a recursive ordering to have a wellordered segment of a certain order type. ${ }^{1}$ The second (Theorem 2) is a géneralization, in some sense, of a theorem of Kleene [4, XXVL]. This enables us to apply Kleene's [3, Theorem 2] directly in our proof of Spector's theorem (Theorem 3 in this note). So it seems that the proof becomes much shorter. ${ }^{2}$

We first introduce some notations. $f \in \mathbf{L} \equiv\{f$ is a Gödel number of some recursive linear ordering $\left\{\right.$ which orders some set $\left.M_{f}\right\}[2] . f \in \mathbf{W} \equiv\{f \in \mathbf{L} \&$ M_{f} is well-ordered by $\left.f\right\}[2] . \mathbf{S}(f, n)$ is a primitive recursive function such that $f \in \mathbf{L}$ implies (i) $\mathbf{S}(f, n) \in \mathbf{L}$ for all n, (ii) if $n \notin M_{f}, M_{\mathbf{S}(f, n)}$ is empty,
 for all $x, y \in M_{\mathbf{S}}(f, n)[2$, p. 156]. $\|f\|$ is the order type of $\{$ if $f \in \mathbf{L},|b|$ is the order type named by b, if $b \in 0$ [2]. y^{*} stands for $2^{y}, H_{y}(u)$ is defined as in [2].

Theorem 1. If $f \in \mathbf{L}, f d \mathbf{W}, y \in 0$ and for every function $\alpha(i)$ recursive in $H_{y^{* *}},(\mathrm{i})(\alpha(i+1) \stackrel{f}{\prec}(i))$, then for every $b \in 0$ with $|b|<|y|$, there is some $n \epsilon M_{f}$ such that $|b|=\|\mathbf{S}(f, n)\|$.
Proof (by induction on the ordinal $|b|$). The proof for the case $|b|=0$ is simple.

Suppose $0<|b|<|y|$. Let enm (i) be a primitive recursive function which enumerates all the numbers $<_{0} b$ [6]. By the induction hypothesis, for every i, there is some $n_{i} \in M_{f}$ such that $|\operatorname{enm}(i)|=\left\|\mathbf{S}\left(f, n_{i}\right)\right\|$. Let n_{i} be determined as a total function of i by $n_{i}=\mu z\left(z \in M_{f} \&|\operatorname{enm}(i)|=\|\mathbf{S}(f, z)\|\right)$. Note that $\left|\operatorname{enm}(i)^{* *}\right| \leqq\left|b^{*}\right| \leqq|y|$ we see that n_{i} is recursive in H_{y} by [2, Theorem 3 and Theorem 5].

Since $S\left(f, n_{i}\right) \in \mathbf{W}$ for every i and by the supposition of the theorem,

