RECURSIVE LINEAR ORDERINGS AND HYPERARITHMETICAL FUNCTIONS

SHIH-CHAO LIU

The main purpose of this note is to give an alternative proof to a theorem by Spector [1] which answers a question raised by Kleene [3, p. 25]. There are two by-products. The first (Theorem 1) specifies a sufficient condition for a set linearly ordered by a recursive ordering to have a wellordered segment of a certain order type.¹ The second (Theorem 2) is a géneralization, in some sense, of a theorem of Kleene [4, XXVL]. This enables us to apply Kleene's [3, Theorem 2] directly in our proof of Spector's theorem (Theorem 3 in this note). So it seems that the proof becomes much shorter.²

We first introduce some notations. $f \in \mathbf{L} = \{f \text{ is a Gödel number of some recursive linear ordering } \downarrow which orders some set <math>M_f\}$ [2]. $f \in \mathbf{W} = \{f \in \mathbf{L} \& M_f \text{ is well-ordered by } f \}$ [2]. $\mathbf{S}(f, n)$ is a primitive recursive function such that $f \in \mathbf{L}$ implies (i) $\mathbf{S}(f, n) \in \mathbf{L}$ for all n, (ii) if $n \notin M_f$, $M_{\mathbf{S}(f, n)}$ is empty, (iii) if $n \in M_f$, $M_{\mathbf{S}(f, n)}$ is a segment $\hat{x}(x \neq n)$ of M_f and $x = \begin{cases} f, n \\ f \neq \mathbf{L} \end{cases}$ $y \equiv x \neq y$ for all $x, y \in M_{\mathbf{S}(f, n)}$ [2, p. 156]. ||f|| is the order type of $\boldsymbol{\zeta}$ if $f \in \mathbf{L}$, |b| is the order type named by b, if $b \in 0$ [2]. y^* stands for 2^y , $H_y(u)$ is defined as in [2].

Theorem 1. If $f \in L$, $f \notin W$, $y \in 0$ and for every function $\alpha(i)$ recursive in $H_{y^{**}}$, (i) $(\alpha(i+1) \neq (i))$, then for every $b \in 0$ with |b| < |y|, there is some $n \in M_f$ such that $|b| = ||\mathbf{S}(f, n)||$.

Proof (by induction on the ordinal |b|). The proof for the case |b| = 0 is simple.

Suppose 0 < |b| < |y|. Let enm (i) be a primitive recursive function which enumerates all the numbers $<_0 b$ [6]. By the induction hypothesis, for every *i*, there is some $n_i \in M_f$ such that $|\text{enm}(i)| = ||\mathbf{S}(f, n_i)||$. Let n_i be determined as a total function of *i* by $n_i = \mu z(z \in M_f \& |\text{enm}(i)| = ||\mathbf{S}(f, z)||)$. Note that $|\text{enm}(i)^{**}| \leq |b^*| \leq |y|$ we see that n_i is recursive in H_y by [2, Theorem 3 and Theorem 5].

Since $S(f, n_i) \in W$ for every *i* and by the supposition of the theorem,

Received September 29, 1961