Notre Dame Journal of Formal Logic Volume III, Number 2, April 1962

A SIMPLE PROOF OF FUNCTIONAL COMPLETENESS IN MANY-VALUED LOGICS BASED ON ŁUKASIEWICZ'S C AND N

ROBERT E. CLAY

Past investigations, [1], [2] and [3], have used the integers $1, 2, \ldots, n$ as truth-values for an *n*-valued logic. In such a logic, the truth-functions associated with C and N have the following definitions

$$C(p, q) = \max(1, q-p+1);$$
 $N(p) = n-p+1.$

Here we shall use n + 1 - valued logics with truth-values $0, 1, \ldots, n$. As a result, the above definitions simplify to

$$C(p, q) = \max(0, q-p);$$
 $N(p) = n-p.$

Not only does this simplify the computations involved, but also makes a simple line of proof apparent. No logical tools are used, and the only non-trivial number-theoretic result used is "If (a, b) = d,¹ then there are integers x and y for which ax + by = d."

Theorem 1. Any function² which takes the value 0 once and n otherwise is generated by C and N.

- 1. C(p, p) = 0.
- 2. N(0) = n.
- 3. $\alpha_m(p_1, \ldots, p_m) = \min(n, p_1 + p_2 + \ldots + p_m)$ is generated for $m \ge 1$. Proof is by induction.

$$C(0, p_1) = p_1 = \min(n, p_1) = \alpha_1(p_1).$$

Suppose that α_k is generated for $k \ge 1$.

$$N(\boldsymbol{\alpha}_{k}(\boldsymbol{p}_{1},\ldots,\boldsymbol{p}_{k})) = \max(0, n-(\boldsymbol{p}_{1}+\ldots+\boldsymbol{p}_{k}).$$

Received February 26, 1962

 $^{^{1}(}a, b) = d$ means that d is the greatest common divisor of a and b.

²All functions used in this paper will have $0, 1, \ldots, n$ as the domain for each argument and will take values in this set.