Notre Dame Journal of Formal Logic Volume III, Number 2, April 1962

ON THE INFINITY OF POSITIVE LOGIC

IVO THOMAS

No direct proof seems to have been published of the theorem that no finite matrix can be adequate to the positive logic of implication, which is here proved.

In the alphabet p_1, p_2, \ldots, p_n , (n > 1), form $(p_i \supset p_j) \supset p_j$ for all i, j: $1 \leq i < j \leq n$, and $p_i \supset p_1$ for all i: 1 < i < n. A_n is to have all these expressions as antecedents, p_1 as consequent. Then A_n is not a positive thesis but becomes so if any two variables are identified. Hence any n-1 valued matrix that validates the positive system, validates A_n . Hence no finite matrix is adequate to the positive system.

Proof: That for no n is A_n positive is shown by the fact that if the variables are valued by their subscripts A_n has the value 1 in the infinite matrix of Dummett's **LC** for which cf. [1]. While if any two variables are identified, there results either an antecedent equivalent in the positive system to p_1 , or a pair of antecedents p_i , $p_i \supset p_1$, the consequent being always p_1 .

REFERENCE

[1] M. A. E. Dummett: A propositional calculus with denumerable matrix, The Journal of Symbolic Logic, vol. 24 (1959), pp. 97-106.

Received February 24, 1962