Notre Dame Journal of Formal Logic Volume III, Number 2, April 1962

ON THE CONNECTION OF THE FIRST-ORDER FUNCTIONAL CALCULUS WITH MANY-VALUED PROPOSITIONAL CALCULI

JULIUSZ REICHBACH

From the results presented in my paper [2] it follows that it is possible to approximate the first-order functional calculus by many valued propositional calculi; in this paper* we shall describe this approximation.

We shall use the terminology of [2] and in particular:

- (1) individual variables: x_1, x_2, \ldots [or simply x],
- (2) apparent individual variables: a_1, a_2, \ldots [or simply a],
- (3) finite number of functional variables: f_1, \ldots, f_c ,
- (4) logical constants: ' (negation), + (alternative), Π (general quantifier),
- (5) atomic expressions: R, R_1, R_2, \ldots ; expressions: $E, F, G, E_1, F_1, G_1, \ldots$
- (6) w(E) -the number of different individual [p(E)-apparent] variables occurring in the expression E,
- (7) $\{i_m\}$ -the sequence $i_1, \ldots, i_m; \{i_{w(E)}\}$ -all different indices of those and only those individual variables which occur in E,
- (8) $n(E) = \max \{w(E) + p(E), \max \{i_{w(E)}\}\},\$
- (9) $\overline{n}(E) = n(E)$, if E is an alternative of normal forms, $\overline{n}(E) = \max \{n(E), n(F)\}\$, where F is the simplest alternative of normal forms equivalent to E, in the opposite case (we choose an arbitrary alternative),
- (10) \overline{c} -maximum of arguments of f_1, \ldots, f_c ,
- (11) E(u/z) -the expression resulting from E by substitution of u for each occurrence of z in E (with usual conditions),
- (12) C(E) -the set of all significant parts of the formula E: $H \in C(E)$.² = . H = E or there exist F, G, H_1 such that: $(H = F) \land (E = F') \lor \{(H = F) \lor (H = F)\}$ $\lor (H = G)\}$ $(E = F + G) \lor (\exists i) \{H = H_1 (x_i/a)\} \land (E = \Pi a H_1),$
- (13) Skt the set of all formulas of the form $\sum a_1 \dots \sum a_i \prod a_{i+1} \dots \prod a_k F$, where F is a quantifierless expression containing no free variables, $\prod a_j$ is the sign of the universal quantifier binding the variable a_j and $\sum a_i G = (\prod a_i G')^i$, $j = 1, \dots, k$.³

Received January 29, 1961

^{*}An abstract of this paper appeared in [5].