ON THE CONNECTION OF THE FIRST-ORDER FUNCTIONAL CALCULUS WITH MANY-VALUED PROPOSITIONAL CALCULI

JULIUSZ REICHBACH

From the results presented in my paper [2] it follows that it is possible to approximate the first-order functional calculus by many valued propositional calculi; in this paper* we shall describe this approximation.

We shall use the terminology of [2] and in particular:
(1) individual variables: x_{1}, x_{2}, \ldots [or simply x],
(2) apparent individual variables: $a_{1}, a_{2}, \ldots[$ or simply $a]$,
(3) finite number of functional variables: f_{1}, \ldots, f_{c},
(4) logical constants: ' (negation), + (alternative), Π (general quantifier),
(5) atomic expressions: R, R_{1}, R_{2}, \ldots; expressions: E, F, G, E_{1}, F_{1}, $G_{1}, \ldots{ }^{1}$
(6) $w(E)$-the number of different individual [$p(E)$-apparent] variables occurring in the expression E,
(7) $\left\{i_{m}\right\}$-the sequence $i_{1}, \ldots, i_{m} ;\left\{i_{w(E)}\right\}$-all different indices of those and only those individual variables which occur in E,
(8) $n(E)=\max \left\{w(E)+p(E), \max \left\{i_{w(E)}\right\}\right\}$,
(9) $\bar{n}(E)=n(E)$, if E is an alternative of normal forms, $\bar{n}(E)=\max \{n(E)$, $n(F)\}$, where F is the simplest alternative of normal forms equivalent to E, in the opposite case (we choose an arbitrary alternative),
(10) \bar{c}-maximum of arguments of f_{1}, \ldots, f_{c},
(11) $E(u / z)$-the expression resulting from E by substitution of u for each occurrence of z in E (with usual conditions),
(12) $C(E)$-the set of all significant parts of the formula $E: H \in C(E) .^{2} \equiv$. $H=E$ or there exist F, G, H_{1} such that: $(H=F) \wedge\left(E=F^{\prime}\right) \vee\{(H=F)$ $\vee(H=G)\} \quad(E=F+G) \vee(\exists i)\left\{H=H_{1}\left(x_{i} / a\right)\right\} \wedge\left(E=\Pi a H_{1}\right)$,
(13) Skt -the set of all formulas of the form $\Sigma a_{1} \ldots \Sigma a_{i} \Pi a_{i+1} \ldots \Pi a_{k} F$, where F is a quantifierless expression containing no free variables, Πa_{j} is the sign of the universal quantifier binding the variable a_{j} and $\Sigma a_{j}^{j} G=\left(\Pi a_{j} G^{\prime}\right)^{\prime}, j=1, \ldots, k .{ }^{3}$

[^0]
[^0]: *An abstract of this paper appeared in [5].

