INTUITIONISM RECONSIDERED

HUGUES LEBLANC and NUEL D. BELNAP, JR.

It has long been known that standard Gentzen rules of inference for PC_l , the intuitionist propositional calculus, will do for PC_C , the classical propositional calculus, once the intuitionist elimination rule for ' \sim ', namely:

 NE_I : $A, \sim A \vdash B$,

is strengthened to read:

 $NE_{C}: \sim \sim A \vdash A.$

It has recently been shown that the said rules will also do for PC_C once the intuitionist elimination rule for ' \supset ', namely:

 HE_{I} : A, $A \supset B \vdash B$,

is strengthened to read:

 HE_{C} : $A \supset B$, $(A \supset C) \supset A \models B$.¹

We shall now show that the said rules will finally do for PC_C once the intuitionist elimination rule for '=', namely:

$$BE_{I}: (a) A, A \equiv B \vdash B$$

(b) A, B = A \vdash B,

is strengthened to read:

 $BE_{C}: (a) A, (C \equiv A) \equiv (C \equiv B) \vdash B$ (b) A, (C = B) = (C = A) \vdash B.

The debate between intuitionist logic and classical logic, a debate which originally centered around ' \sim ' and has more recently come to center around ' \supset ', can thus be made to center around ' \equiv ' as well. Details are as follows.

Let all five of ' \supset ', ' \sim ', '&', 'v', and ' \equiv ' serve as primitive connectives of PC_C ; let 'A', 'B', and 'C' range over the well-formed formulas of PC_C ; let 'A₁, A₂, ..., A_n \vdash B', where n > 0, be short for 'B is deducible in PC_C

Received December 23, 1961