A NOTE CONCERNING THE MANY-VALUED PROPOSITIONAL CALCULI

BOLESŁAW SOBOCIŃSKI

For the purpose of investigating many-valued propositional calculi the following simple theorem is often useful:

THEOREM: Any implicational thesis of the bi-valued propositional calculus in which only one variable occurs is a thesis in a many-valued system \mathfrak{S} provided the following conditions are satisfied: (i) implication is primitive or defined in \mathfrak{S} ; (ii) the ordinary operations of substitution and detachment in respect of implication are valid in \mathfrak{S} ; (iii) any implicational thesis of \mathfrak{S} is a thesis of the bi-valued calculus, and (iv) the following theses hold in \mathfrak{S} : A1 Cpp; A2 CpCCqrCCpqr or A2* CCqrCpCcpqr; A3 CCrpCCqpCrCqp or A3* CCqpCCrpCrCqp; A4 CCprCCqpCcrpCqp or A4* CCqpCCprCCrpCqp; A5 CCprCCqpCqCCrpp or A5* CCqpCCprCqCrpp.

PROOF: Assume that F is an arbitrary implicational bi-valued thesis in which there occurs only one variable, say "p". Then the last consequent of **F** is equiform with "p" and this variable is preceded by n (for: $1 \le n < \infty$) antecedents. Hence, **F** is either **T**I: $C\alpha_1 C\alpha_2 \dots C\alpha_{n-1} C\alpha_n p$ or **T**II: $C\alpha p$. If **F** is **T**I, then there must exist such α_k (for: $1 \leq k \leq n$) that formula **G**: $C\alpha_{k}p$ which is shorter than **F** and is **T**|| itself, is a thesis of the classical propositional calculus. Otherwise, **F** could not be a thesis of \mathfrak{S} . Consider now a formula α_j which is a part of **F** and is such that $j \neq k$ and $1 \leq j \leq n$. If α_i is false, then $C\alpha_i p$ is a thesis of the bi-valued propositional calculus, and together with **G** and A3 (or A3*) implies theses: B1 $C\alpha_i C\alpha_k p$ and B2 $C\alpha_k C\alpha_j p$. On the other hand, if α_j is a thesis, then its form is: $C\beta_1 C\beta_2 \dots$ $C_{\beta_{m-1}}C_{\beta_m}p$, for: $1 \leq m < \infty$. Since this is an implicational thesis, the following formula: $CpC\beta_1 C\beta_2 \dots C\beta_{m-1}\beta_m$, to be referred to as C1, is of the same length, and is also a thesis of the bi-valued propositional calculus. In such a case C1, G, A4 (or A4*) and A5 (or A5*) imply B1 and B2 again. Therefore, elementary inductive reasoning shows that if F is TI, then it can always be obtained from A3, A4, A5 (or A3*, A4*, A5*), and shorter theses in which only one variable occurs. Consequently, any thesis of type **TI** can be reduced to shorter theses of type **TII**. But, any thesis of this type is either A1 or has the following form: D1 $CC_{\gamma_1}C_{\gamma_2}...C_{\gamma_{r-1}}C_{\gamma_r}pp$, for: $1 \leq 1$ $r < \infty$. Since D1 is a thesis, then any of its components γ_i , for: $1 \le j \le r$, must also be a thesis of the bi-valued calculus. Hence D1 follows from A1, A2 (or A2*) and the theses $\gamma_1, \gamma_2, \ldots \gamma_r$ each of which is shorter than D1. Since any thesis γ_i is of type **T** or **T** i, an elementary proof by induction

Received March 21, 1961.