THREE SET-THEORETICAL FORMULAS

BOLESŁAW SOBOCIŃSKI

The set-theoretical formula which says that:

A. If m is a cardinal number which is not finite, then there exists no cardinal number n such that $m < n < 2^m$,

is called the generalized continuum hypothesis. It is known 1 that ${\mathfrak A}$ is inferentially equivalent to:

 \mathfrak{B} . The axiom of choice

taken in conjunction with

©. Cantor's hypothesis on alephs

which says that

For any ordinal number α : $2^{\aleph \alpha} = \aleph_{\alpha+1}$

Moreover, it is known² that \mathbb{C} is inferentially equivalent to:

 \mathfrak{D} . If \mathfrak{a} is an arbitrary aleph, then there exists no cardinal number such that $\mathfrak{a} < \mathfrak{n} < 2^{\mathfrak{a}}$.

The aim of this note is to show that the following three set-theoretical formulas:

- A. For any cardinal numbers m and n which are not finite, if $n < 2^{m}$, then $n \leq m.^{3}$
- **B.** For any cardinal numbers m and n which are not finite, if $n < 2^m$, then either $n \le m$ or m < n.
- **C.** For any cardinal number n which is not finite and any cardinal number a, if a is an aleph and $n < 2^{a}$, then $n \leq a$.

are such that formula A is equivalent to \mathfrak{A} , formula B-to \mathfrak{B} and formula Cto \mathfrak{C} . It seems to me that this fact, which as far as I know has not been noticed, is of some interest, because the formulas A, B, and C having very similar structure elucidate the mutual connections among the fundamental laws \mathfrak{A} , \mathfrak{B} and \mathfrak{C} .

Received November 7, 1960.