THREE-VALUED PROPOSITIONAL FRAGMENTS WITH CLASSICAL IMPLICATION

IVO THOMAS

In [1] V. Vučković discussed a generalized system of recursive arithmetic, for which also see [2], in which he found he could obtain the representing equations of a three-valued propositional logic containing classical implication, a weak negation and two systems of conjunction-alternation. He suggested a third system as the union of these two, retaining the weak negation, in fact the system A discussed in [3], but later realised that the model of such a union was unobtainable in the arithmetic. We show that any complete axioms for his matrices

and an arbitrary three-valued function $\phi(x_1,\ldots,x_n)$ become two-valued or inconsistent when any unprovable formula is added to the axioms. (N_2 was not primitive in the original but defined as $KNN\alpha C\alpha N\alpha$.) Thus the system has more possibilities of extension, by new cases of ϕ , than was originally envisaged, but fewer in terms of already axiomatized ϕ .

In the statement of the axioms i,j take values l or l. The rules are detachment and substitution.

- 1. CCCpqrCCrpCsp
- 2_j . CpN_1N_jp
- $3_{i,j}$. $CN_i p N_1 N_j p$ $(i \neq j)$
- 4_i . $CN_i \not DC\not Dq$
- 5_i . $CpCN_iqN_iCpq$
- 6. CCN_2ppCCN_1ppp
- 7. $Cx_1'Cx_2'\ldots Cx_n'\phi(x_1,x_2,\ldots,x_n)' \qquad (n \geq 0)$

7 prescribes the writing of 3^n axioms in correspondence with the 3^n lines of the truth-table of ϕ . In each, α' is α or $N_1\alpha$ or $N_2\alpha$ according as α has the value 0,1,2 in the corresponding line of the table.