LIMITED UNIVERSAL AND EXISTENTIAL QUANTIFIERS IN COMMUTATIVE PARTIALLY ORDERED RECURSIVE ARITHMETICS

M. T. PARTIS

1. In this paper we shall be dealing with the two different types of recursive arithmetics which will be described as V-systems and C-systems. These arithmetics have the following properties.

V-systems

- (1) Every number x has n successors, denoted by S_1x , S_2x , ..., S_nx .
- (2) The system has three initial functions, namely, the zero function, Z(x), written 0, the identity function, I(x), written x, and n successor functions, $S_v x$, with v = 1, 2, ..., n.
- (3) Primitive recursive functions can be defined by using the schema

$$F(x, 0) = a(x)$$

 $F(x,S_y) = b_y(x, y, F(x, y)) v = 1, 2, ..., n,$

where $\mathbf{a}(\mathbf{x})$ and $\mathbf{b}_{\mathbf{v}}(\mathbf{x},\mathbf{y})$ are previously defined functions. Functions can also be defined explicitly by substitution.

(4) The system is made commutative by introducing the axiom

 $S_v S_u X = S_v S_u X$ u, v = 1, 2, ..., n,

and by stipulating that the functions used in a defining schema of the type given above satisfy the condition

$$b_{v}(x,S_{u}y,b_{u}(x,y,F(x,y))) = b_{u}(x,S_{v}y,b_{v}(x,y,F(x,y))).$$

C-systems

- The elements of the system are ordered sets of n natural numbers, written (x₁, x₂, ..., x_n).
- (2) Functions are defined as ordered sets of n primitive recursive functions in single successor recursive arithmetic, written

$$(f_1(x_1, \ldots, x_n), f_2(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)).$$

The functions f_1, f_2, \ldots, f_n are called component functions.

(3) Two functions in a C-system are said to be equal if their corresponding component functions are equal, i.e.

Received February 4, 1966