A CHARACTERIZATION OF S^m BY MEANS OF TOPOLOGICAL GEOMETRIES

MICHAEL C. GEMIGNANI

In a recent paper in this Journal [1], the author characterized \mathbb{R}^m as a topological space using the concept of a topological geometry. The purpose of the present paper is to present a similar characterization for the m-sphere S^m . The terminology and propositions referred to by number are those of [1].

Theorem 1: Let X and G form an m-arrangement, $m \ge 2$, and suppose X is second countable. Then if $S = \{x_0, \ldots, x_m\}$ is a linearly independent subset of X and $T = \{p_0, \ldots, p_m\}$ is any maximal linearly independent subset of \mathbb{R}^m with the usual Euclidean geometry \overline{G} , then there is a homeomorphism d which maps C(S) onto C(T) and $F^iC(S)$ onto $F^iC(T)$, $i = 0, \ldots, m$, such that $d(G_{C(S)}) = \overline{G}_{C(T)}$.

Proof: Set $d(x_i) = p_i$, i = 0, ..., m. Let $S_1 = i \leq j$ $\overline{x_i x_j}$. By 3.27, $d \mid S$ can be extended to $d_1: S_1 \to K^1C(T)$, the *I*-skeleton of C(T) such that d_1 is a homeo-

morphism onto which carries $\overline{x_i x_j}$ onto $\overline{p_i p_j}$. Set $S_2 = i < j < k^{C(\{x_i, x_j, x_k\})}$ Define $d_2: S_2 \to K^2 C(T)$, the 2-skeleton of C(T) as follows: If $C(\{x_i, x_j, x_k\})$ $\subseteq S_2, d_2 = d_1$ on Bd $C(\{x_i, x_j, x_k\})$. Choose $z \in \operatorname{Int} C(\{x_i, x_j, x_k\})$. Then $f_1(x_i, z)$

Fig. 1.

Received July 7, 1965