A HENKIN COMPLETENESS THEOREM FOR T

M. J. CRESSWELL

In [1] A. Bayart uses a method similar to that of Henkin [2] to prove a completeness theorem for the S5 modal predicate calculus.¹ We show how this method can be adapted to give completeness results for first order quantificational T and S4 with the *Barcan* formula.² T is a modal predicate calculus with propositional variables $p, q, r \ldots$ etc., individual variables $x, y, z \ldots$ etc., individual constants $u_1, u_2, u_3 \ldots$ etc., and predicate variables ϕ, ψ, χ etc., \sim , v, the universal quantifier and L (the necessity symbol). We assume usual formation rules and definitions of \supset , ., \equiv , \exists , and M. T has the following axioms and axiom schemata,

PC some set sufficient for the propositional calculus

LA1 $Lp \supset p$ LA2 $L(p \supset q) \supset (Lp \supset Lq)$

 $V_1(a) \alpha \supset \beta$ where *a* is an individual variable and β differs from α only in having some individual symbol *b* (variable or constant) everywhere where *a* occurs free in α provided *a* in α does not occur within the scope of (*b*). B (the *Barcan* formula) $(x)L\alpha \supset L(x)\alpha$ where α is any wff. and the following rules of transformation; Uniform substitution for propositional variables provided no variable is bound as a result of substitution. (If PC and LA1, LA2 are formulated as schemata this rule, and the propositional variables, are unnecessary)

 $\begin{array}{ll} \mathbf{MP} & \vdash \alpha, \vdash \alpha \supset \beta \rightarrow \vdash \beta \\ \mathbf{LR1} & (\text{Necessitation}) \vdash \alpha \rightarrow \vdash L\alpha \\ \mathbf{V}_2 \vdash \alpha \supset \beta \rightarrow \vdash \alpha \supset (\alpha)\beta & \text{where } a \text{ is some variable not free in } \alpha. \end{array}$

We obtain S4 by adding LA3 $Lp \supset LLp$ and S5 by adding LA4 $\sim Lp \supset L \sim Lp$ (If we have LA4 we may drop the *Barcan* formula; cf. [6]).

We say that a formula is *closed* (a cwff) if it contains no free variable. Where \wedge is a set of formulae and β a wff we say that $\wedge \vdash \beta$ iff there is some finite subset of \wedge , $\{\alpha_1, \ldots, \alpha_n\}$ such that $(\alpha_1 \ldots \alpha_n) \supset \beta$. The following are derivable;

T1 (The Deduction Theorem) If \land , $\alpha \vdash \beta$ then $\land \vdash (\alpha \supset \beta)$.

Received November 14, 1965