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AFFINE GEOMETRY HAVING A SOLID AS PRIMITIVE

THEODORE F. SULLIVAN

INTRODUCTION In this dissertation we consider the problem of con-
structing a system of geometry devoid of such geometrical primitives as
points, lines, and surfaces; and admitting as primitives only solids or
‘‘chunks’’. In other words can we start with some solid as a primitive
term and from there add appropriate axioms to obtain a geometrical system
equivalent to a well known geometrical system such as Euclidean geometry
or affine geometry ?

Part of the answer was given by A. Tarski (in [8]) who solved the prob-
lem for ordinary Euclidean geometry. His solution was as follows:

(1) He begins with an axiomatization of the relation ‘‘A is part of B”
(This deductive system is due to LeSniewski (see [5]) and is called Mereol-
ogy (see Appendix A)).

(2) He adds to Mereology the primitive term sphere and uses only the
part relation and sphere to define the notion point-class and the notion of
equidistance among point-classes.

(3) Then he adds the ordinary axioms of Euclidean geometry (based on
point and equidistance as primitive—see M. Pieri [6]) replacing the primi-
tive terms by the defined terms above.

(4) Finally if we interpret sphere as open ball in ordinary Euclidean
geometry there is a bijective correspondence between point-classes and
points; and Tarski’s system is equivalent to Euclidean geometry.

We shall consider a generalization of Tarski’s result in which we solve
the above problem for the class of affine geometries which are equivalent
to finite dimensional vector spaces over an ordered field.
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