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COMPLETE MODALIZATION IN S4.4 AND S4.0.4

J. JAY ZEMAN

In [l] bases for S4 and S4.2 were offered which didn't require axioms
beyond those of the PC; in [2] a version of the deduction theorem was
presented giving a unified treatment of this metatheorem for S4, S4.2, and
S5. The central idea in these papers was the notion of "complete modali-
zation"; the three different concepts of complete modalization presented
serve as characterizations of these three distinct systems.

Two other systems which lend themselves to the treatment of those
papers are S4.4 [4] and S4.0.4 [3], It is possible to find modifications of the
notion of complete modalization chracteristic of each of these systems. We
recall first of all that S4.4 and S4.0.4 result from the addition, respec-
tively, of CpCMLpLp and CpCLMLpLp to S4 (we assume, of course, that the
added axiom comes under the sway of a rule to infer Lφ from any theorem
φ; if S4 is thought of as being in the original Lewis formulation rather than
a Lemmon-type [5] base, we would add versions of these extra axioms with
strict, rather than material, implication as the main connective).

We now state the rules of [l] for the introduction of L in antecedent and
consequent of an implication:

RL1: Caβ ->\-CLaβ
RL2: Caβ —>\-CaLβ, provided a is completely modalized.

Complete modalization in S4 may be recursively defined as follows:

(a) If φ is an S4 theorem, φ is completely modalized in S4
(b) Lφ is completely modalized in S4.
(c) If φ and ψ are both completely modalized in S4, so too is Kφψ.

We now extend the definition to S4.4 and S4.0.4:

(d) If φ is completely modalized in S4, it is completely modalized in
both S4.4 and S4.0.4.

(e) KφMLφ is completely modalized in S4.4
(eτ) KφLMLφ is completely modalized in S4.0.4
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